Non Uniform Sampling

What is Non-Uniform Sampling?

Non-Uniform Sampling (NUS)

is a sampling technique which samples points in indirect dimension(s) of multidimensional experiment non-uniformly (= sparsely, randomly)

Multidimensional correlation experiments can be made shorter

Caution!
NUS is not bulletproof

Uniform Sampling

Non-Uniform Sampling

Dealing with non-uniform sampling (indirect dimension)

Uniform sampling

Iterative Soft Thresholding

Effect of NUS on COSY

COSY signal

Interferogram (t_{1} FID) is an echo signal

Uniform sampling + zerofilling
Sampling time

Sampled points Zerofilled points
NUS + CS

Non-uniformly sampled points
Reconstructed points

Same number of sampled points
NUS allows us to sample the signal in t_{1}-domain for longer NUS is efficient in COSY, DQF-COSY, E. COSY, etc.

Example of E. COSY (determination of relative sign of J)

E. COSY requires 24 scans for phase cycling => very long

Even if your sample is concentrated
Even if you have a high-sensitivity NMR probe

Uniform sampling + 2D FT 512 sampled y_points

100 mM strychnine

In order to measure ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ coupling constants, high resolution is required

Example of E. COSY

E. COSY requires 24 scans for phase cycling => very long

Even if your sample is concentrated
Shortened to $1 / 4$!
Even if you have a high-sensitivity NMR probe
 20.5 hours

Uniform sampling + 2D FT
512 sampled y_points
Equivalent spectra

25\%-NUS + CS
128 sampled y_points

NOESY

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY $\quad 200 \mathrm{mM}$ strychnine

Incomplete reconstruction of low-intensity cross-peaks in the presence of large diagonal peaks

Influence of noise

-

$$
\underbrace{6000}_{0.4}
$$

2D FT: High S/N
CS: High S/N

full

CS: Low S/N
NUS data reconstruction is difficult if S / N is low

HSQC of cyclosporine

So what is the best sampling scheme?

There is no universal solution (just like there is no best pulse flip angle and relaxation delay for pulse acquire experiments)

Optimal resolution would require sampling up to $\sim 3 T_{2}$, and the S / N reaches a maximum at $\sim 1.2 T_{2}$. ${ }^{*}$

* Rovnyak, et al. J Biomol NMR 30, 1-10 (2004) https://doi.org/10.1023/B:JNMR.0000042946.04002.19

Note:
Large number of increments facilitates observation of small coupling constants correlations, which typically are caused by long range correlations. This is generally desired in HMBC, but not always in COSY.

And how many datapoints are the minimum?

Between 10 and 30 sampling points as many peaks in any column (not peaks but significant peaks, i.e, x tallest peaks),eg, 10 correlations for a proton in an HMBC, then 100-300 sampled points
[25\% of 256 y_points allows detecting reliably ~2 signals per chemical shift in direct dimension]

NUS IST Reconstructions Compared to "Ideal" Reconstruction Generated from the Sum of IST Reconstructions of Fully-Sampled Individual Peaks

NUS Sampling Density, Percent
https://www.youtube.com/watch?v=hK82D-4Flyg

Try other algorithms

COSY 64 increments inflated to 256

- IST reconstruction
 - HMS IST reconstruction

Note that if the experiment was acquired with 256 increments out of 1024, the noise from reconstruction would not be so intense. Sampling density alone does not define how tough is the reconstruction.

Influence of additional zero filling

