

JEOL

Automation Scripting Language

Reference Guide

for

Sequencer Class NMR Spectrometers

Delta & Control software
version 6.0

v1.4
7 June 2019

Delta™ and Control software and the Automation scripting language are
copyright 1990-2019 by JEOL Resonance, Inc. All rights reserved.

 Copyright 2005-2019 JEOL Resonance, Inc.
 Author: Matthew W. Borchers 3-1-2 Musashino, Akishima, Tokyo
 borchers@jeol.com Japan 196-8558

Automation Scripting Language

AISDG JEOL

Table of Contents

Introduction ... 1

Automation Jobs ... 1

Automation Script Files ... 1
Comments ...1

Definition of Terms ..2

STRINGS ..2
IDENTIFIERS ..2
KEYWORDS ...2

Location of Support Files ..4

FILE PATH URLS ..4
DIRECTORY SEARCH ORDER ...4

Value Types ..5

BOOLEAN ..5
Boolean Expressions ... 5

NUMBER ...6
Number Bases ... 7

TEXT ...7
LIST ..8
DATA ..8
SUB-TYPES ...8

Value Type Casting ..9

Duration Syntax ...10

Basic Script Structure..11

Statements ...12

CALL ...13
CONST ...15
DELAY ..18
EMAIL ...19
ENUM ..21
EXIT ..25

 Automation Scripting Language

JEOL AISDG

EXPERIMENT .. 27
FINISH .. 33
GROUP .. 34
IF .. 35
INCLUDE ... 38
INFORM .. 40
INVOKE ... 42
LIMIT .. 45
LIST .. 46
MACRO ... 48
METHOD ... 51
NUMBER ... 60
ON ERROR .. 64
PERCIVAL ... 68
PRESENTATION ... 70
PRINT ... 72
PRINT CONTEXT ... 75
PROCESS ... 77
PROMOTE ... 79
PROMPT .. 80
RAISE ... 83
REMARK ... 84
REPEAT .. 85
RETAIN ... 90
RETRY .. 91
SET ... 93
TERMINATE .. 100
TRANSLATE .. 102
TUNE .. 104
VAR .. 105
VISUALIZE .. 110

Parser Instructions ...115

Table of Units ..117

Table of Substitution Identifiers119

Writing a Duration Statement Expression127

Example Script ..129

Automation Script Grammar131

Automation Scripting Language 1

AISDG JEOL

Introduction

 Automation is the ability to perform a task with little to no human control or interaction. For
NMR users, this is the ability to acquire data from an NMR spectrometer and manipulate that data in
a predetermined way without having to attend to the spectrometer or sit at a computer workstation.
Automated tasks are coded into text files called Automation Scripts in which are written the ordered
series of steps that the spectrometer will perform to accomplish a task and produce a desired result.

Automation Scripts are the way the automated process is facilitated on the JEOL NMR
spectrometer. With the JEOL Delta and Control software, Automation can acquire data, process data,
print data, and inform the user of its results in various ways. In addition to these basic tasks, the
Automation system can prepare the spectrometer for acquisition with automatic tuning and shimming
and can conditionally execute and repeat parts of the Script with branching and looping constructs
based on user specified pre-conditions and/or execution-time parameter comparisons.

Automation Jobs

 Automation Jobs are created and submitted with the Spectrometer Control window using the
Sample and Job Creation tabs along with the Experiment Setup area. The Job Creation tab is the
only way that multiple Methods can be placed into a Job. Methods can be added to a Job by loading
an Automation Script file and selecting any of the Methods that are contained within that file to be in
the Job. Any number of Methods from any number of Script files may be added to the Job and
Methods may even be added more than once.
 The Experiment Setup area allows the user to characterize and execute a single experiment as
an Automation Job by creating a Method on the fly that contains the experiment.

When Automation executes a Job, it runs each Method within the Job in the order in which
the Methods are listed. When no Samples are specified, the Method(s) are executed a single time.
When Samples are provided with the Job, the Job is run once for each specified Sample.

Automation Script Files

An Automation Script file can be written using any text-editing program, however a
specialized graphical tool for developing Methods is planned. The syntax is nearly free form,
meaning that blank space (spaces, tabs, line separators, etc.) is ignored with the one exception of the
ELSE clause of the IF statement. Refer to the section describing the IF statement for details. The
language is also not case sensitive, meaning for example, that AUTOMATION, Automation, and
automation are all equivalent keywords. However, throughout this document UPPERCASE will
be used to indicate keywords of the Automation Script grammar.

Comments

 Comments are allowed anywhere within the Automation Script text. Comments have
meaning to the author and potential users of the script only and so they are ignored by Automation.
Single line commented text begins with the two dashes, --, and continues to the end of the same

2 Automation Scripting Language

JEOL AISDG

physical line on which they began. Multi-line comments begin with a forward slash followed by a
dash, /-, and continue to the next occurrence of a dash followed by a forward slash, -/.

Refer to the subsequent section describing the REMARK statement for an important
caveat regarding comments.

 The following are examples of commented text:

-- A single line comment

-- Comment Header Block --

INFORM /-This is an inline comment-/ “This will print”;

/- This comment
 spans multiple lines
 and ends here. -/

Definition of Terms

STRINGS
 A String is a series of zero or more characters (including letters, numbers, symbols, and/or
white space) surrounded by single or double quotation characters. Strings are used in the Automation
Script to represent textual elements such as words or phrases. To include a quote character in the
String, precede the embedded quote with a back-slash character. Example: “say \“hello\”” or use
single outer-quotes: ‘say “hello”’. A String can be assigned to a variable of the TEXT Type.

IDENTIFIERS
 An identifier is a special word used in the Automation syntax that either has a special inherent
meaning or is given a meaning. An example of an identifier that has a special inherent meaning is a
reserved word. Some examples of identifiers that are given a meaning are the title of an Experiment,
the name of a variable, and the title of a Method.

Identifiers have two restrictions pertaining to how they are defined. First, the only characters
allowed to be part of an identifier are the alphabetic characters, the numeric characters, and the
underscore, ‘_’. Second, an identifier must begin with an alphabetic character. In English, the
alphabetic characters are the lowercase letters ‘a’ through ‘z’ and the uppercase letters ‘A’ through
‘Z’. The numeric characters are the numbers ‘0’ through ‘9’.

KEYWORDS
Keywords are the special identifiers of the Automation Script language that provide the

structure of the syntax. These keywords are reserved by Automation, which means that they cannot
be used to name objects (variables, Methods, and experiments, etc.) in an Automation Script. The
following table lists the words that are reserved by Automation.

Automation Scripting Language 3

AISDG JEOL

abort active after alert all and as

assert association attach automation

boolean buttons by

call capitalize cast category coil collect complete
conceal console const constrain context continue

data date day decrease default delay depends
dialog div divisible do domain dual duration

else email enable end enum error evaluate
exclude exit expand experiment expired expose

false fatal file finish for force from

group

help hour

icon if ignore in include increase info
inform inout integer interactive interim invoke is

job keys

limit list log lowercase

machine macro message method minute mod modulo
multiple

namespace no not null number

of offset on optimize options or out

parameter passive percival precision prepare presentation print
printer probe process processed project promote prompt
purpose

quiet

raise raw ref remark remove repeat retain
retry

sample save scout second service set shims
show status step subject

template terminate text then time to translate
true tune types

unit until uppercase user

var version visualize

warning when while with

xor yes

4 Automation Scripting Language

JEOL AISDG

Location of Support Files

 There are many statements in the Automation Script grammar in which the author of the
Script must provide the location of another file for Automation to carry out its purpose. The kinds of
support files that may be required to execute an Automation Script include pulse programs,
processing lists, and presentation layout files. The places in the Automation Script syntax where
these files are specified are:

• The COLLECT statement within an EXPERIMENT block specifies a pulse program to
run to acquire data.

• The default file for a VAR and CONST definition of the DATA Type.
• The default file for a DATA Type parameter of a METHOD.
• The TEMPLATE clause in a PRESENTATION statement specifies a Presentation layout

file to use to print.
• The WITH clause in a PROCESS statement specifies a processing list file to process data.
• The INCLUDE statement access a separate Automation Script file.

FILE PATH URLS

The named location of a file is often called a URL (Universal Resource Locator). The URL
form in an Automation Script is “server:path”. Server is an IP address or fully qualified
hostname like host.example.com where host is the name of an NMR instrument on the
example.com network. All that is required, however, is the path part of the URL that specifies a
relative directory location of a file on disk. Files must be within directory structure rooted at one of
the established locations for them to be available to use by Automation.

DIRECTORY SEARCH ORDER
Each Automation Script that is submitted to the spectrometer will likely have a list of support

files that are required for the Automation to properly execute. The file list contains the locations of
any required file that cannot be found in the standard locations at the time when the Script is
submitted to the spectrometer. When Automation requires a support file, the system searches the
following locations in the following order:

1. Check the list of required files for a filename match. This list of filenames was generated
at the time when the Automation Script was submitted and will most likely contain the
names of the files that existed on the user’s workstation. Files not located on the
spectrometer need to be uploaded to the spectrometer so that they will be accessible at the
time when the job is ready to run. Note that the path parts of the filenames on this list are
not used to match a file. This means that files that are put on this list should contain
unique names disregarding any directory path they might have.

2. Check the default directory if one is available.
3. If the Automation is not currently running on a spectrometer, check the standard local

directory of the kind of file that is being located. Many parts of an Automation Script
could be executed on a computer other than the NMR spectrometer computer and, in these
situations, Automation will look for files in this location.

4. Check the current owner's private directory on the spectrometer. This location is skipped
in the case where there is not a private directory for the current owner. A private directory
is created for each registered user where they can upload and store personal files.

Automation Scripting Language 5

AISDG JEOL

5. Check the standard spectrometer directories. These are the directories that contain the files
supplied by JEOL and are installed with the JEOL NMR spectrometer control software.

If a file cannot be found after searching the above locations, Automation will stop and an error
message will be displayed. The user will have to correct the problem and then resubmit the
Automation Script.

Value Types

 A Type is a special word that informs Automation of what kind of values a variable, constant,
and Method parameter may contain. All variables, constants, and Method parameters must have a
Type. Types help the author of the Automation Script avoid the mistake of using a variable in a
manner for which it was not intended. Types also help other users gain a better understanding of how
they are to use the variables and Method parameters provided for them.

There are five basic Types that are predefined in the Automation Script grammar: BOOLEAN,
NUMBER, TEXT, LIST, and DATA each of which will now be described individually.

BOOLEAN
A variable of the BOOLEAN Type can hold either a True or False value. The keywords TRUE

and YES commonly represent the True value and the keywords FALSE and NO commonly represent
the False value. It is the BOOLEAN Type that enables the branching statements, such as the IF
statement, to make decisions about what statements to execute.

A True value is any of the following possibilities:
• either of the literal TRUE or YES Boolean values
• all positive and negative Numbers
• Strings containing at least one character
• Lists that contain at least one value of any Type
• Data variables that point to a valid data file

False values are defined to be values that are not True. There are only eight constant values

that represent the False value: FALSE, NO, 0, “”, “false”, “no”, {}, and Null. Casing of the letters in
“false” and “no” is ignored. The following table shows examples for each basic Type.

Type True values False values
BOOLEAN TRUE, YES FALSE, NO, Null
NUMBER …, -3, -2, -1, 1, 2, 3, … 0, Null

TEXT “hello”, “16”, “0” “”, “false”, “no”, Null

LIST
{1} {0}

{“hello”} {“”}
{FALSE} {1, “Delta”}

{}, Null

DATA Any valid data file reference. Null

Boolean Expressions
Boolean expressions are phrases that result in a single Boolean value after they are evaluated.

Boolean expressions consist of up to three types of elements: Boolean values, comparison operators,

6 Automation Scripting Language

JEOL AISDG

and logical operators. A Boolean value within an expression can only be the four keywords TRUE,
YES, FALSE, or NO and, of course, variables of the BOOLEAN Type.

The comparison operators (=, /=, <, <=, >, >=, in, not in) result in a Boolean
value by comparing two values of any Type to each other. Examples of simple Boolean expressions
follow. In these examples, b is a BOOLEAN Type variable and n is a NUMBER Type variable.

TRUE
b
n = 5
n < 10
n in {2,4,6}

There are four logical operators (not and or xor) that are used to build compound

Boolean expressions. The truth table below shows the Boolean values that result from these
operators.

Input Operators
A B not A A and B A or B A xor B

TRUE TRUE FALSE TRUE TRUE FALSE
TRUE FALSE FALSE FALSE TRUE TRUE
FALSE TRUE TRUE FALSE TRUE TRUE
FALSE FALSE TRUE FALSE FALSE FALSE

Compound Boolean expressions can be written using any combination of the above logical

operators. not is called a unary operator because it uses a single value to compute the opposite truth
value. and, or, and xor are called binary operators because each use two values to determine the
logical result. Parentheses may be added for readability, but they are required around sub-
expressions when using more than one of the binary logical operators. Examples of compound
Boolean expressions are:

n = 5 or n >= 10
(n > 0 and n < 10) or not b

Boolean expressions are used in the IF statement, in the WHILE and UNTIL forms of the

REPEAT statement, and in the WHEN clause which may be specified on the RAISE, EXIT, and
TERMINATION statements.

NUMBER
A variable of the NUMBER Type can hold a rational number like the integer 5 or a number

with a decimal part like 1.6. Numbers are implicitly positive, but may be preceded with a plus sign,
+. A minus sign, -, can precede a number value to make the number negative. In some instances, a
unit is permissible with the number. In these cases, the unit is written within brackets following the
number using the standard SI abbreviated form. See the ‘Table of Units’ after the ‘Statements’
section for a list of available units and the proper prefixes. INFINITY and -INFINITY are valid
numbers and may also have units. Examples of numbers with units are:

7[s] (7 seconds)

Automation Scripting Language 7

AISDG JEOL

12.5[kHz] (12.5 kilohertz)

Powers are acceptable in a unit by putting an integer immediately following the unit name.
For example:

20[m2] (20 square meters)
16[s-1] (16 per second = 16 hertz)

Multiple units can be specified with the multiplication (*) and division (/) operators within

the unit. The following two examples are equivalent:

16[m/s] (16 meters per second)
16[m*s-1] (16 meters per second)

Number Bases

A number may be specified in one of four bases: binary, octal, decimal, or hexadecimal. A
base is specified with a pound sign, #, preceding the number with a letter code: ‘b’ for binary, ‘o’ for
octal, ‘d’ for decimal, or ‘h’ for hexadecimal. Decimal is the default base if a base indicator is not
provided. For binary numbers, 0 and 1 are the only permissible digits. Octal numbers use only the
digits 0 through 7. Decimal numbers use the digits 0 through 9. Hexadecimal numbers use the digits
0 through 9 and the letters A through F to represent the values of 10 up to 15. See the following table
for number representations in each base up to 15.

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Binary 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111

Octal 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17

Hexadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F

Examples of the decimal number 13 written in each base for Automation are:

#b1101
#o15
#d13 or 13
#hD

TEXT

A variable of the TEXT Type contains a series of zero or more characters called a String.
Values of type TEXT are written with double quotes (“”) or single quotes (‘’) surrounding the
characters. Examples of TEXT values are:

“”
“gauss”
‘base correct’
“12”

A numeric value and the representation of that numeric value as a textual value are not related

and not equivalent. For example, the textual value “12” and the numeric value 12 are not the same.
The equality operator will return FALSE when comparing “12” = 12.

8 Automation Scripting Language

JEOL AISDG

A String may contain a substitution identifier that will be replaced by the current value of that
identifier at the point in the String where it is used. See the Table of Substitution Identifiers for
details on this. For example, the String “Today is: $(DAY)” will be translated to “Today is Monday”
when the String is processed on a Monday.

LIST
A variable of the LIST Type contains a series of zero or more values of any Type surrounded

by braces, {}. Lists can best be explained by examples. The following examples are values of the
LIST Type:

{}
{2}
{“water”, 12.5}
{{1, 2[s]}, {3, 4[s]}, TRUE, 9.11}
{{“first”,1}, {“second”,2}, {“third”,3}}

The first of these examples is a list that does not contain a value. This is typically called an

empty list. The reader can see from the third example, a list does not have to be homogeneous – that
is to say, a list may contain a mix of values of any Type, even Lists themselves as the fourth example
demonstrates. Homogeneous Lists and key-value paired Lists which can be called “Associations”,
are created using the LIST declaration statement. Homogeneous Lists are lists that consist of data
that all have the same Type. Association Lists are lists that contain only sub-Lists that contain two
parts: a key and a value. The key must be a String and the value may be any Type. Refer to the LIST
entry in the following ‘Statements’ section for more detail.

Placing an integer or a NUMBER Type variable containing an integer within parentheses after a
LIST Type variable can access a specific element in a list. LIST Type values are indexed by integers
beginning with 1 for the first element, 2 for the second element, etc. For example, suppose that L is a
LIST Type variable containing at least three elements. To access the third element of L, the author
would use the expression: L(3).

DATA
A variable of the DATA Type contains a reference to a JEOL NMR data file. DATA Type

variables can be assigned values using textual URLs that reference a file on disk. The
EXPERIMENT block usually creates a DATA Type constant with the value of the file that results
from the acquisition. Refer to the EXPERIMENT entry in the following ‘Statements’ section for
details of when the EXPERIMENT block will generate in a LIST Type value.

SUB-TYPES
 Beyond the five predefined basic Types in the Automation grammar, the author of an
Automation Script may define their own sub-Types. Sub-Types are derived from the basic Types
with added restrictions. These are created using the NUMBER, ENUM, and LIST declaration
statements. A ENUM sub-Type puts constraints on the TEXT Type. A NUMBER sub-Type puts
constraints on the NUMBER Type. A LIST sub-Type puts a limitation on the Types that a LIST Type
variable may contain. Refer to the ENUM, NUMBER, and LIST entries in the following
‘Statements’ section for full descriptions of the way these Types can be constrained.

Sub-Types must be defined before they can be used. When a sub-Type is declared prior to a
METHOD block, that sub-Type may be used in the parameter section of any Method block that
follows the Type definition statement.

Automation Scripting Language 9

AISDG JEOL

Value Type Casting

Intentionally transforming a value from one Type to a different Type is known as casting.

Casting is necessary when we want to use a value in a different form and therefore need to change the
value before it is stored. Additionally, there are situations where we might not know the Type of a
value being read into Automation (for example, through the Job, Method, or Sample attributes). In
these cases, we need to make sure that the value we are storing is of the proper Type for the variable
that we are using to hold the value.

The author can request a cast operation be performed when providing an initial value for a
variable definition and when assigning a new value to an existing variable. In both cases, the
destination of the casted value is a variable and the source value is another variable or a value
obtained from an external source.

A value can neither be cast to the DATA Type nor to the LIST Type. Values can be cast to the
BOOLEAN, NUMBER , and TEXT Types and to any sub-Type of these three basic Types. The resulting
Type is determined by the Type of the variable to which the result is being stored. For example, if
the author wants to store a NUMBER Type value to a TEXT Type variable then the cast will attempt to
convert the number to a String. If the cast cannot successfully transform the data, then a “type-error”
is raised at runtime.

From Type To Type From Value Result

BOOLEAN
NUMBER

TRUE 1
FALSE 0

TEXT
TRUE “TRUE”
FALSE “FALSE”

NUMBER
BOOLEAN

0 FALSE
Non-zero TRUE

TEXT All values The String representation
of the number

TEXT

BOOLEAN
“” FALSE

Non-zero length String TRUE

NUMBER
Well-formed numerical

representation of a
number with optional unit

The value of the number
representation

LIST BOOLEAN
{} FALSE

Non-zero length LIST TRUE

DATA BOOLEAN Any valid data file
reference TRUE

A Null value will be transformed into a False, 0 (zero), or empty String when cast depending

on the Type the destination variable.

10 Automation Scripting Language

JEOL AISDG

 Duration Syntax

 There are two ways to specify a duration (a period of time) in an Automation Script. In the
following examples, an n will be used to indicate a non-negative number – a number that is greater
than or equal to zero. The number does not have to be an integer value. Here are the four basic
constructs of the first form:

 n SECONDS
 n MINUTES
 n HOURS
 n DAYS

Note that the ‘S’ on the end of each duration keyword (shown shaded) is optional and may be
added for readability. The above four basic duration constructs may be combined. The longer unit
durations must appear prior to the shorter durations when written this way. Here are some examples:

 10 MINUTES
 1.5 MINUTES
 1 MINUTE 30 SECONDS
 6 HOURS 1 SECOND
 1 DAY 12 HOURS 30 MINUTES 30 SECONDS

The reader should also note from the example above that 1.5 MINUTES and 1 MINUTE
30 SECONDS produce equivalent results. Specifying a zero for one of the durations has the same
effect as if that duration was not specified. The following two duration expressions are equivalent:

 5 MINUTES 0 SECONDS
 5 MINUTES

 The second encoding form of a duration is written by separating the non-negative numbers
with a colon. The number of colons in the duration value will indicate the duration’s units. This
form written like this:

 day-number:hour-number:minute-number:second-number

Using this form, minute-number and second-number are required, but day-number and hour-
number (shown shaded) may be omitted. Note that hour-number can be provided without a day-
number, but because of the positional nature of this form, if day-number is specified then hour-
number must also be specified. Double digits are not required and white space is allowed on either
side of the colons as shown in the following examples. These examples have the same durations as
the examples shown above using the first form respectively:

 10:00 -- 10 minutes
 1.5:0 -- 1 minute, 30 seconds
 1:30 -- 1 minute, 30 seconds
 6 : 00 : 01 -- 6 hours, 1 second
 1: 12: 30: 30 -- 1 day, 12 hours, 30 minutes, 30 seconds

Automation Scripting Language 11

AISDG JEOL

Basic Script Structure

The first keywords in a contemporary Automation Script file (that are not part of a comment)
must be:

 AUTOMATION TYPES VERSION number PURPOSE informational-text;

where the number represents a positive integer greater than or equal to 2. These keywords and the
following number identify the file to be an Automation Script usable by version 5.0 and greater of
JEOL’s NMR software products. This line does not necessarily have to be the first line of the file –
blank space and lines containing only comments, as described above, may precede these keywords.
 If the keyword TYPES is included, then the Automation Script can neither contain Methods
nor include other Scripts. Only purpose statements, Type definition statements, language translation
statements, remarks, and comments are allowed.
 A PURPOSE clause may follow the version number. The informational-text is one or more
Strings separated by commas. The text should include a short description of the purpose of the
Automation Script. The intent is to provide the user and reader of the Script with a short and helpful
description about the Method(s) in the Script and their relationship to each other. Note that if the
PURPOSE clause is part of this line, the text will not and cannot be translated.

If the PURPOSE clause is omitted from the initial AUTOMATION line, then a single
PURPOSE statement may then follow the AUTOMATION line and any REMARK and/or
TRANSLATE statements. In this case, the informational-text can be made up of one or more mixed
Strings or translation identifiers separated by commas. However, translation identifiers can only be
included in the information-text if the PURPOSE statement follows one or more TRANSLATE
statements that define the translation identifier(s).

PURPOSE informational-text;

 The author of the Automation Script may choose to categorize the Methods within this file by
following the AUTOMATION VERSION statement with a CATEGORY statement of the form:

 CATEGORY category-list;

where category-list is a single quoted string or a comma separated list of strings. The categories in
this list should aid the users in locating the Automation Scripts of interest to them.

 Following the identifying lines should be one or more of the basic statements: a METHOD
block, an INLCUDE, TRANSLATE, and/or a REMARK statement, a sub-Type declaration statement
(ENUM, NUMBER, LIST), and/or a MACRO statement. Each of these statements is described in
detail in the following section.

NOTE: In the above syntax line and in the Automation statement descriptions of the next
section, any part of a syntax that is displayed with a shaded background is an optional part of
the syntax and may be omitted. Some parts may be more darkly shaded indicating that
portions of the optional part may themselves be omitted. Any part of a syntax that is
underlined indicates that those elements may be repeated.

12 Automation Scripting Language

JEOL AISDG

Statements

Each of the following sub-sections describe the statements that Automation makes available
to use in an Automation Script. Near the beginning of each statement description is the syntax of the
statement. Some statements are a bit complex so the syntax may be expanded in the paragraphs that
follow. Examples of each statement are provided for clarity. The examples are distinguished from
the body text by left side vertical lines.

There are a few statements that are permissible at the outermost level of an Automation
Script. Not including the initial identification statement beginning with the AUTOMATION
keyword, these statements are: METHOD, TRANSLATE, ENUM, NUMBER, LIST, and REMARK.
Within a METHOD block, however, all the Automation statements may be used with a few
restrictions. The statements that have restrictions on where they can be used are:

• the EXIT statement, which can only be used within a REPEAT block, and
• the RETRY statement, which can only be used as the last statement in an ON ERROR block.

To do work, an Automation Script must contain at least one METHOD block. A METHOD

block is the statement used to construct the series of steps that Automation will perform to carry out a
task. Any of the following statements may be used within a METHOD block, including other
METHOD blocks. The following statements are discussed in alphabetical order, but it may be useful
for the reader to peruse the section pertaining to Methods first.

Automation Scripting Language CALL - 13

AISDG JEOL

CALL

 The CALL statement can execute a Percival operator or a service provided by the
spectrometer or an available hardware device attachment. The following syntax is used to call a
Percival operator:

 CALL PERCIVAL percival-operator-name(argument-list);

To execute a service on a device via the Service Manager use the following syntax:

 CALL SERVICE “service-request”(argument-list);

The first difference in the syntax is that the PERCIVAL keyword is optional when calling a
Percival operator, but the SERVICE keyword is required when invoking a service. The second
difference is that quotation marks are required around the service-request but quotation marks must
not be used around the percival-operator-name. In both cases, the argument list, which includes the
surrounding parentheses, is optional.

Service Request Syntax
 A service-request has the following form:

 “provider.major-version.minor-version::operation”

where provider is the name of the device that is providing the service, major-version and minor-
version are both integers indicating the version of the service that is being requested, and operation is
the service function to be executed. Notice that the minor-version and the period before it is an
optional component of the service name.

Passing Information Through Parameters
 An ‘argument’ (in the computer science sense) is a value that is passed to another routine
through its parameter interface. When an argument-list is specified, it must be surrounded by
parentheses. One or more values, variable names, substitute identifiers (see the ‘Table of Substitute
Identifiers’ after the ‘Statements’ section for the full list of words that are recognized), or the special
keywords (USER, ALL, RAW, or PROCESSED) may be included in the argument-list. To specify
more than one argument, separate each argument from each other with a comma.
 The NULL keyword can be used as an argument for either a Percival operator or for a Service
call causing a Null value to be passed for that parameter.

• Passing Data Files

The ALL keyword will construct a set of every data file that has been collected or processed
up to the point of the CALL statement and use that set as an argument of the operator or service at the
position of the ALL keyword in the argument list.

The RAW and PROCESSED keywords behave similarly except that the RAW keyword will
construct a set of just the raw data files and the PROCESSED keyword will construct a set of just the
processed data files.

Only one instance of either ALL, RAW, or PROCESSED is allowed in the argument list and
it may optionally be followed by the FILES keyword for readability.

14 - CALL Automation Scripting Language

JEOL AISDG

• Passing User Authentication
 The USER keyword will cause a Network Context to be passed as the argument at the
position of the keyword. The user’s Network Context contains the username and password of the
operator who submitted the job.

Asynchronous Service Limitation
 At this time, asynchronous service calls may be executed, but the resulting value returned
from the service call will be lost. This means that Services that make a request and return a result
through a callback will not function properly in Automation.

Examples
 The following are examples of the use of the CALL statement. Note that all of the Percival
operators and service names in these examples are fictional.

The simplest for is a basic Percival operator invocation.

CALL my_operator;

A CALL statement will return the resulting value to Automation if the Percival operator or
service routine that is specified returns a value. This next example of another Percival operator
invocation shows this syntax (refer to the SET statement). The ‘factorial’ function computes the
mathematical factorial of 5, 5!, which will result in the value of f being 120 = 5 × 4 × 3 × 2 × 1.

VAR f : NUMBER;
SET f = CALL factorial(5);

The following example passes a constant String of text and all the processed data files
(acquired by any prior EXPERIMENT block) to a function called examine_data.

CALL examine_data(“peak”, PROCESSED FILES);

The following example passes all the raw data files (acquired by any prior EXPERIMENT
block) to the check_file operation of the file_service service.

CALL SERVICE “file_service.1.0::check_file”(RAW FILES);

The next example passes the JOB_ID and the value of the status variable to a service
routine called interface. The result of the service invocation is stored in the variable result.

VAR status : TEXT = “ok”;
VAR result : NUMBER;
SET result = CALL SERVICE “device.1.0::interface”($(JOB_ID), status);

The next example passes the user’s authentication information to a service with a Boolean
value and then to a Percival operator with a Number.

CALL SERVICE “device.1.0::reset”(USER, TRUE);
CALL reset(0, USER);

Automation Scripting Language CONST - 15

AISDG JEOL

CONST

A constant is a named value like a variable except that its value is immutable (it cannot be
modified during the execution of the Automation Script). Refer to the VAR statement for a
description of creating a variable whose value can be modified. A constant must be defined before it
can be referenced and it must be assigned a value at the time that it is created. Use the CONST
statement to create a named value that cannot be changed during the execution of the Automation
Script. The CONST statement has the following syntax:

EXPOSE CONST constant-name : value-type = default-value
WHEN expression , dependency , HELP help-text;

The constant-name is an identifier that uniquely names the constant. More than one constant,

variable, or Method parameter with the same name cannot exist in the same scope level. A constant,
variable, or Method parameter with the same name at an outer scope level will be hidden (or eclipsed)
by the newly defined constant.

Value-type may be any of the five basic Types defined in the Automation grammar
(BOOLEAN, NUMBER, TEXT, LIST, or DATA) or it may be a sub-Type defined prior to the Method
using the ENUM, NUMBER, or LIST statement.

The default-value can be specified in one of the following ways:

constant
JOB job-attribute ELSE constant
SAMPLE sample-attribute ELSE constant
NAMESPACE namespace-path ELSE constant
EVALUATE (expression) ELSE constant

 Constants of the DATA Type cannot use the JOB, SAMPLE, NAMESPACE, or EVALUATE
clauses shown above to set their value. Only a constant String or an expression that results in a TEXT
Type value is a legal form for initializing a DATA Type constant. Note that the use of an expression
to initialize a constant could potentially raise a Type-Error exception while the Script is running if the
expression does not result in a TEXT Type.

Description
Constant is a value that should be of the Type value-type, which is the Type of the constant

being defined. If constant is not appropriate for value-type, the error condition “type-error” will be
raised when the statement attempts to set the value of the constant.

Job-attribute is a String or variable of the TEXT Type that specifies the attribute of interest
from the running Job Group.

Sample-attribute is a String or variable of the TEXT Type that specifies the attribute of interest
from the current sample.

Namespace-path is a String or variable of the TEXT Type representing a stored value in the
Namespace parameter database.

Expression is a Percival code expression that will be evaluated.
More than one Job, Sample, Namespace, or Evaluate clause may be specified when they are

separated by an ELSE keyword before the optional final ELSE clause.
The optional ELSE clause provides a specific default value for the cases when the job-

attribute, sample-attribute, namespace-path cannot be found or when those values or the evaluation

16 - CONST Automation Scripting Language

JEOL AISDG

expression cannot be resolved to an appropriate value of the required Type. If the ELSE clause is
omitted, then an error condition will be raised if a value is not found or if the constant value after the
ELSE keyword does not conform to the requirements of the constant declaration.

Help for the User

A short helpful description may be attached to exposed constant definitions (those beginning
with the EXPOSE keyword) by adding a comma, the HELP keyword, and one or more Strings
(separated by commas) at the end of the constant declaration. Help text is not required, but its
inclusion is strongly encouraged so that users may better understand the purpose of the variable.

The help text can be replaced by a previously defined language translation identifier to allow
the help text to be determined by the current locale. See the TRANSLATE statement for information
about creating and using translatable text.

Exposed Constants
The EXPOSE keyword causes the constant’s name and value to appear in the Method

attributes area of the Job page on the Spectrometer Control window. The description provided in the
help text will also be displayed with the constant. Exposing a constant gives the user the ability to
override the default initial value specified by the constant declaration. The ultimate value of an
exposed constant will be the value that is supplied by the operator on the user interface.

The When Clause
The WHEN clause may only be specified if the EXPOSE keyword is used. The constant will

only be enabled on the user interface when the expression evaluates to a True value. The expression
is evaluated each time a Method parameter or other exposed variable/constant is changed.

Dependent Constants
 A dependency clause may only be specified if the EXPOSE keyword is used and it stipulates
how the initial value of this constant should be affected when other values upon which it depends are
changed. A dependency clause is specified on an exposed constant in the same way that it can be
attached to a Method parameter.
 A dependency clause has the following syntax:

DEPENDS ON parameter-or-variable-list EVALUATE (expression)

Refer to the Parameter Options: Dependencies section in the description of the METHOD
statement for more details.

Examples
The following are examples of the use of the CONST statement. This first example defines a

value for mathematical π (represented by the variable named math_pi).

CONST math_pi : NUMBER = 3.14159265359;

The following example obtains the “filename” attribute of the job and sets fname to
represent its value. fname will be set to “” (an empty String) if the “filename” attribute is not found
or if the attribute is not of the TEXT Type.

CONST fname : TEXT = JOB “filename” ELSE “”;

Automation Scripting Language CONST - 17

AISDG JEOL

The next example obtains the “notebook” attribute from the current sample and sets it to the
constant named nbook. nbook will be set to “unknown” if the Sample attribute cannot be found.

CONST nbook : TEXT = SAMPLE “notebook” ELSE “unknown”;

The next example creates a constant minimum sweep width value set to 2[ppm] that will be
visible on the Automation user interface by using the EXPOSE keyword.

EXPOSE CONST min_sweep : NUMBER = 2[ppm],
 HELP “The minimum sweep width for”,
 “all experiments in this Method”;

The next example gets the “field_strength” value of the magnet from the Namespace

parameter database and stores it in the field constant.

CONST field : NUMBER = NAMESPACE “parameter.field_strength”;

The value of the next example is determined by evaluation of the String expression.

CONST two_pi : NUMBER = EVALUATE (2 * pi);

The following example creates a constant Boolean value and a dependent value.

CONST debug : BOOLEAN = FALSE;

CONST log_msg : BOOLEAN = FALSE WHEN debug = TRUE;

The following examples are errors. The first is a syntax error because it does not provide a
default value. The second is an error because the Type of the value does not match.

CONST rate : NUMBER; --This is an error, no value provided
CONST name : TEXT = 5; --5 is a Number, expected a String

The following examples show the use of a user defined Type.

ENUM Nuclei IS (“1H”, “2H”, “13C”);

CONST nucleus : Nuclei = “1H”;

18 - DELAY Automation Scripting Language

JEOL AISDG

DELAY

The DELAY statement will cause the execution of the Method to pause for a specified amount
of time. The two syntax forms of the DELAY statements are:

 DELAY time AFTER data-variable-name WHEN expression;

The time is specified using the Duration syntax. Refer to the section titled ‘Duration Syntax’

that describes how to specify times. Here are two identical examples:

2 MINUTES
2:00

These examples tell Automation that the Method should stop execution until after two minutes

have passed from the time the DELAY statement was encountered.

Waiting After a Data Acquisition
If the AFTER keyword is given with a data-variable-name, then the time to wait is relative to

the time that the specified data file had finished acquiring and was stored to disk. This form has the
following syntax:

DELAY 2 MINUTES AFTER prior_data;

For this example, prior_data is the name of a data file variable from a previous

experiment. The actual wait time may be shorter, but will not be longer than the specified time (in
the above example, two minutes). There will be no delay if the specified data file had been stored
more than the specified amount of time before the DELAY statement was encountered. In this
example, if the data specified by prior_data had been stored more than two minutes ago, the
Method would proceed without delay.

The When Clause
If the WHEN clause is specified, the DELAY statement will cause the Method to pause when

the specified expression evaluates to a True value. Refer to the section titled ‘Boolean Expressions’
for how an expression evaluates to a Boolean value.

The expression can also begin with or be replaced by a Job attribute, a Sample attribute, or a
Namespace value. If the value obtained is not one of the False values, the Method will pause.

DELAY 1 MINUTE WHEN JOB attribute expression;
DELAY 1:00 WHEN SAMPLE attribute expression;
DELAY 60 SECONDS WHEN NAMESPACE path expression;

Attribute and path must be a quoted String literal value or a variable of the TEXT Type. If

expression is included, it must be written such that the value of the Job, Sample, or Namespace part is
the first value of the conditional test. For example, SAMPLE “count” > 0. If an expression is
not provided, then the value of the attribute or Namespace path alone will determine the truth state.

Automation Scripting Language EMAIL - 19

AISDG JEOL

EMAIL

The EMAIL statement will send an electronic message from the user who submitted the job to
the specified recipient(s). The syntax of the EMAIL statements is:

EMAIL ALERT TO addresses CC addresses BCC addresses
 SUBJECT string-or-variable
 MESSAGE message-text
 ATTACH variable-name;

Specifying Recipients

Addresses is a list of one or more of the following options separated by the AND keyword: a
comma separated list of properly formatted email address within quotation marks, a constant or
variable name containing a TEXT Type value of a properly formatted email address, a constant or
variable name containing a LIST Type value holding one or more properly formatted email addresses,
or the USER keyword. The USER keyword may only appear after the TO keyword and it will
include the email address associated with the account of the person who submitted the Automation
Script to the Job queue. This email is specified in the Account Management tool of the spectrometer.

The TO keyword is optional and specifies that the following email addresses should be set to
the “to” line of the email. The CC (carbon-copy) keyword and its following addresses specify the
email addresses that are to be set to the “cc” line of the email. The BCC (blind carbon-copy)
keyword and its following addresses specify the email addresses that are to be set to the “bcc” line of
the email. Bcc addresses are not visible to any of the recipients of the email message. The email
addresses are processed in order and duplicates are ignored.

Email Alerts
 The inclusion of the ALERT keyword indicates that this email contains a message that is of a
higher priority than usual. When the ALERT keyword is included and the USER keyword is used to
specify a recipient, the special “alert” email address of the user will also be added to the email
recipient list. Alert messages should be short. It is recommended that the combination of the lengths
of the subject line and the message-text be less than 160 characters to conform to the standard SMS
text messaging limitations. This is because users can specify the email address of their mobile
service provider’s email gateway such that the email will be forwarded to their mobile device as a
text message. Attachments cannot be added when the ALERT keyword is included.

Subject Line
The SUBJECT keyword specifies the line of text that is to be the subject of the email

message. If no subject is provided and the ALERT keyword is omitted, the subject will be
automatically generated to be “Automation message from spectrometer - Job job-id” where
spectrometer and job-id will be replaced with the current name of the spectrometer running the
Method and the current Job ID respectively. The author may specify the subject of the message with
a quoted String, with a constant or variable containing a TEXT Type value, or with a language
translation identifier. Refer to the TRANSLATE statement regarding language translations.

Message Body
The message-text follows the MESSAGE keyword and can be either a series of Strings

separated by commas or a single language translation identifier. This text will become the body of
the electronic mail.

20 - EMAIL Automation Scripting Language

JEOL AISDG

Value Substitution
There are many special symbols that may appear within the subject line and the body text that

will be replaced when the message is sent. The special symbols are formed by placing a word within
parentheses and preceding it with a ‘$’ character. As is the case for the entire Automation syntax, the
casing of the letters of the word within parentheses is not significant. This way, the author of the
Script can include the value of a named constant, variable, or parameter previously defined in the
Automation Script into the email. See the ‘Table of Substitute Identifiers’ after the ‘Statements’
section for the full list of words that can be used in the subject text and message body text as
substitutes for various values.

Including Attachments
When the optional ATTACH keyword is included in an EMAIL statement, it must be

followed by a single variable-name or a list of variable-names separated by AND keywords. The
Attach phrase may appear at the end of this statement zero, one, or more times. The inclusion of this
keyword causes each of the files specified by variable-name to be included into the email as an
attachment. Specifying ATTACH multiple times with a single variable-name has the same effect as
specifying ATTACH one time with a list of variable-names.

WARNING! Use data file attachments with caution since JEOL NMR data
files can often be quite large which can cause some email servers to reject the
message.

Examples
The first example of the EMAIL statement will send an alert email the user who submitted the job

with the default subject line and a message body of “Job Complete!”.

EMAIL ALERT USER MESSAGE “Job Complete!”;

The next example sends an email to people with a simple message containing some
substitutable values. The address is put in the BCC line and the data in the variable exp is attached
to the message.

EMAIL BCC “everyone@my_company.com”
 SUBJECT “Check out this data”
 MESSAGE
 “Date: $(NOW)”,
 “Collected with sample $(SAMPLE) using $(SITE)”
 ATTACH exp;

In the following example, the user who submitted the job and a supervisor will be sent a
simple message with three attached files.

EMAIL USER CC “supervisor@my_company.com”
 MESSAGE “Here are your data sets”
 ATTACH data1
 ATTACH data2 AND printed_data;

mailto:supervisor@my_company.com

Automation Scripting Language ENUM - 21

AISDG JEOL

ENUM

 The ENUM statement creates a sub-Type of the base TEXT Type. This is called an
enumerated Type because each permissible text value must be explicitly specified by the definition of
the sub-Type. The basic syntax to create an enumerated sub-Type that allows the author to specify
the legal values is:

 ENUM type-name IS (values-list);

 An alternate syntax to create an enumerated sub-Type will cause the values-list to be obtained
from a specified Namespace path. It has the following form:

ENUM type-name IS NAMESPACE casing KEYS namespace-path
 EXPOSE key-name-values-list IGNORE key-name-values-list
 EXCLUDE values-list;

 A third syntax obtains the values-list from the result of a call to a Service or Percival operator
that returns a Set of Strings.

 ENUM type-name IS CALL percival-operator-name(arguments);
 ENUM type-name IS CALL SERVICE “service-request”(arguments);

 It is also possible to mix the above syntaxes by separating the values definition portions with
the AND keyword. The author may begin with any of the syntax forms and may specify more than
one of each form.

 ENUM type-name IS (values-list) AND
 NAMESPACE namespace-path AND
 CALL percival-operator-name;

Description
The type-name is an identifier that specifies the name of the new sub-Type. The ENUM

statement extends the number of available Types that permits statements that come after the ENUM
Type definition to reference the new sub-Type. The type-name may be used in the place of a basic
Type identifier to restrict the set of permissible TEXT Type values. The set of permitted values, in
values-list, can be explicitly specified between the parentheses. In this case, each text value must be
within quotation marks and separated from each other by a comma.

Namespace can be used to provide the set of permitted values by including the NAMESPACE
keyword followed by a namespace-path that must refer to a LIST Type Namespace value. The
namespace-path is a String between quotation marks. If the Namespace value, which becomes its
own values-list, does not exist or is not a LIST Type of Strings then the only legal value for the new
sub-Type is “”. Substitution identifiers cannot be used within the namespace-path for a Type
declaration.

A CALL statement can be used to generate a values-list by calling a Percival operator or
Service that returns a value that is of the Percival SET Type. The syntax of the CALL statement used
within the ENUM statement is the same as other uses of the CALL statement as it can appear
elsewhere in an Automation script. See the description of the CALL statement described earlier.

22 - ENUM Automation Scripting Language

JEOL AISDG

The author of an Automation Script should create an enumerated sub-Type if the user will be
required to specify a value to a parameter of a Method or to an exported variable where only a limited
set of values is permissible for the variable. Making use of an enumerated sub-Type allows the
Automation user interface to provide the user with a ‘Select Enumeration’ widget rather than a basic
textual ‘Input Box’ aiding the user in assigning appropriate values to Method parameters and
variables.

TEXT Type Relationship
Note that a value of an enumerated sub-Type may be assigned to any variable of the TEXT

Type. This implies that all the legal values of the enumerated sub-Type are also legal values of the
basic TEXT Type. Conversely, a value of the TEXT Type may only be assigned to a variable of an
enumerated sub-Type if that value is within the list of permitted values.

Enumeration Indexing
 An enumerated sub-Type can be indexed to retrieve the enumerated value at a specific
position within the sub-Type. This is accomplished by following the name of the enumerated sub-
Type by an integer between square brackets, Type[n]. This form cannot be used within a Percival
expression since Percival is not aware of the Types defined by the Automation script.
 When an enumerated sub-Type is defined, the order of the permissible values is set and never
changes. A positive integer will obtain the value counting from the beginning of the values-list and a
negative integer will obtain the value counting from the end of the values-list. An index of 0 (zero) is
illegal.
 Enumeration indexing is not permitted on a value-list that is produced using the following:

1) a Namespace path that points to an Association of elements using the KEYS keyword, or
2) using the CALL statement to get the values programmatically at run-time.

Obtaining the Values From Namespace

The enumerated values can be retrieved from Namespace when the value of the namespace-
path is a list or an association type value. If the value of the namespace-path is an association type,
use the KEYS keyword to get the values of the key names. Omit the KEYS keyword if the value of
the namespace-path is a list type.

The casing of the values can be adjusted to all lowercase, all uppercase, or capital-case using
the keywords LOWERCASE, UPPERCASE, or CAPITALIZE respectively. Capital-case will
capitalize the first character and any subsequent character whose left-adjacent character is a space, an
underscore, or a hyphen. Capital-case will not change any uppercase characters in the values to
lowercase.

It is possible to prevent one or more of the values returned from Namespace from becoming a
part of the final list of legal values for the enumerated sub-Type. This is useful if the resulting values
from Namespace contain extra items that the author wishes to exclude. Add the EXCLUDE keyword
at the end of the NAMESPACE clause followed by a list of values to leave out. The list of values is a
comma separated list of Strings surrounded by parenthesis.

If the list of values comes from the names of the keys of a Namespace association (by using
the KEYS keyword), then it is possible to permit only certain names of the keys to be included in the
resulting enumerated sub-Type when the Type of the value of each of those key names are themselves
an association Type. To be concise, this option is available when the Type of the value of
namespace-path is an association (first-level) and each of the values of the association are also
associations (second-level). Use the EXPOSE keyword to permit the first-level key name to be
included when the specified second-level key name or names are found within the second level

Automation Scripting Language ENUM - 23

AISDG JEOL

association. Alternatively, use the IGNORE keyword to cause the key to be excluded when the
specified second-level key name or names are found within the second level association. Either the
EXPOSE keyword or the IGNORE keyword must be followed by a comma separated list of Strings
between parenthesis which are compared to the second-level key names. The author cannot specify
both EXPOSE and IGNORE in the same NAMESPACE clause.

Examples
The following are examples of the use of the ENUM statement. The bold font has been used

to show how the type-name is used when declaring variables. Proper and improper uses of the values
of enumerated Types are also described here.

ENUM RGB_Color IS (“red”, “green”, “blue”, “grey”);

ENUM Print_Type IS (“b&w”, “grey”, “full-color”);

ENUM GS_Shims IS NAMESPACE “gradient_shim.allowed_shims”;

ENUM PValues IS CALL Get_Legal_Values(USER);

ENUM Shims IS (“”) AND
 NAMESPACE “shim.shim_names(INCLUDE)” AND
 (“All”);

The last ENUM statement above includes all the shim names in the list specified by the

Namespace path in quotes and adds an empty string at the front of the list and appends the value
“All” to the end of the list. This makes the entire list of system shim names, the empty string, and
“All” valid values for the Shims sub-Type.

Examples of using sub-Types follow:

VAR C : RGB_Color;
VAR P : Print_Type;
VAR T : TEXT;

SET C = “green”; --okay
SET C = “orange”; --error (“orange” is not allowed)
SET C = “”; --error (“” is not allowed)
SET T = C; --okay
SET T = “red”;
SET C = T; --okay
SET T = “test”;
SET C = T; --error (“test” is not allowed for RGB_Color)

SET C = “red”;
SET P = C; --error (“red” is not allowed for Print_Type)

SET C = “grey”;
SET P = C; --okay (“grey” is legal in both RGB_Color and Print_Type)

24 - ENUM Automation Scripting Language

JEOL AISDG

SET C = RGB_Color[1]; --okay (sets C to “red”)
SET C = RGB_Color[2]; --okay (sets C to “green”)
SET C = RGB_Color[5]; --error (5 is out of range)
SET C = RGB_Color[-1]; --okay (sets C to “grey”)
SET C = RGB_Color[-2]; --okay (sets C to “blue”)
SET C = RGB_Color[-5]; --error (-5 is out of range)

The following statement defines a list of domain names that comes from the key names of the
association of the Namespace path “gamma”. Each first-level key name will only be included in the
Gamma_Domains sub-Type if a second-level key named “nodraw” is not a part of the second-level
association values. The value “None” is prepended to the resulting list.

ENUM Gamma_Domains IS
 (“None”) AND

NAMESPACE CAPITALIZE KEYS “gamma” IGNORE (“nodraw”);

Automation Scripting Language EXIT - 25

AISDG JEOL

EXIT

 The EXIT statement is used to terminate the execution of the sequence of statements that are
part of a REPEAT block. It may only be used within the part of a REPEAT block that does the
repetition (not the THEN block) but it may be used within other statement blocks that are embedded
within the REPEAT block, such as the IF statement. The EXIT statement has the following syntax:

EXIT WHEN expression;

 When the EXIT statement is encountered without a WHEN clause, the execution of the
statement block terminates and the statement after the end of the REPEAT block is executed next.
The THEN block of the REPEAT statement will not be executed if the EXIT statement causes the
repetition to end earlier than it normally would have.

The When Clause
If the WHEN clause is specified, the REPEAT block will be exited if the expression evaluates

to a True value. Refer to the section titled ‘Boolean Expressions’ for how an expression evaluates to
a Boolean value.

The expression can also begin with or be replaced by a Job attribute, a Sample attribute, or a
Namespace value. If the value obtained is not one of the False values, the block will exit.

EXIT WHEN JOB attribute expression;
EXIT WHEN SAMPLE attribute expression;
EXIT WHEN NAMESPACE path expression;

Attribute and path must be a quoted String literal value or a variable of the TEXT Type. If

expression is included, it must be written such that the value of the Job, Sample, or Namespace part is
the first value of the conditional test. For example, SAMPLE “count” > 0. If an expression is
not provided, then the value of the attribute or Namespace path alone will determine the truth state.

Examples
 The following two examples make use of the EXIT statement produce the same result –
printing the numbers 0 through 10 on the console. They both assume that a variable or constant
named count was previously defined to be of the NUMBER Type and that was properly initialized.

VAR count : NUMBER = 0;

 The first example makes use of the basic exit statement. An EXIT statement within an IF
block can be used to determine when the repetition should end.

REPEAT
 IF count > 10 THEN

 EXIT;
 END IF;

 INFORM TO CONSOLE “Counter is $(count)”;
 SET count = count + 1;
END REPEAT;

26 - EXIT Automation Scripting Language

JEOL AISDG

 The following example uses the WHEN clause to determine the exit condition. It is shown
that the WHEN clause causes the EXIT statement to behave as if there was an IF statement around it
as in the example above.

REPEAT
 EXIT WHEN count > 10;

 INFORM TO CONSOLE “Counter is $(count)”;
 SET count = count + 1;
END REPEAT;

 The following example will end the repetition when the Sample has an attribute named
“done” that evaluates to a True value.

REPEAT
 EXIT WHEN SAMPLE “done”;

 IF count > 10 THEN
 SET SAMPLE INTERIM “done” = TRUE;
 ELSE
 …

 SET count = count + 1;
 END IF;
END REPEAT;

 The above loop can be written more compactly when the expression is combined with the
SAMPLE clause. This is a very silly example but is useful for illustrative purposes.

REPEAT
 EXIT WHEN SAMPLE “count” > 10;
 …

SET count = count + 1;
SET SAMPLE “count” = count;

END REPEAT;

Automation Scripting Language EXPERIMENT - 27

AISDG JEOL

EXPERIMENT

The EXPERIMENT block acquires data from an NMR spectrometer. The EXPERIMENT
block has the following syntax:

 CONCEAL INTERIM QUIET SCOUT
 EXPERIMENT data-name IS
 SAVE AS string-or-variable;
 COLLECT experiment-filename-or-variable;
 OPTIMIZE optimization-parameters;
 experiment-parameter-assignments-and-constraints;
 END EXPERIMENT data-name;

The data acquired by this statement can later be accessed by the constant that is implicitly
defined with the name given by data-name. Note that the author of the Automation Script cannot use
quoted text for the data variable name as is permitted for the name of a Method. The difference being
that the name of a Method does not define a variable as the EXPERIMENT does with data-name.

One File or Multiple Files?
A DATA Type or LIST Type constant value will be created with the name that is provided and

it will contain the acquired data file(s). It is possible for multiple data files to be produced by the
EXPERIMENT block. The script author should expect a DATA Type value to be created unless the
‘interleave_multi’ or the ‘multi_file’ experiment parameter is set to be TRUE in the specified
experiment file. Refer to the Pulse Programming Guide for Control version 5 for information
regarding these two and other experimental parameters.

Acquiring Temporary Data
The optional INTERIM keyword informs Automation that the data file(s) collected by this

EXPERIMENT block are not to be kept. All of the raw acquired files, as well as any processed files
that were derived from these files, will be deleted when the nearest enclosing Method completes.

Optional Acquisition
The optional SCOUT keyword informs Automation that this EXPERIMENT block will not

produce data of significance other than to potentially provide the conditions for another
EXPERIMENT block to use. At the time when a file would normally be acquired, a search is
performed using the parameters of the scout experiment for a file with similar acquisition parameters.
If a match is found, then the acquisition of this EXPERIMENT block is skipped and the matched file
is used in the place of the acquisition. If both the INTERIM keyword and the SCOUT keyword are
specified, then the file will be deleted only when a match cannot be found – a pre-existing data file
will not be removed.

Specifying the Pulse Program
Each of the sub-components of the EXPERIMENT block must appear in the order shown in

the syntax above. However, the COLLECT statement is the only required part inside the block.
The COLLECT statement can only be used within an EXPERIMENT block and it specifies

the pulse program that will run to acquire the data. The COLLECT keyword is followed by a

 The search criteria for locating a suitable “stand-in” data file has not yet been determined.

28 - EXPERIMENT Automation Scripting Language

JEOL AISDG

filename that can either be a String or a variable of the TEXT Type that contains a filename.
Experiment pulse program files usually end with the .jxp extension. Specifying the extension is not
necessary and it is recommended that it be omitted from the filename when specified within an
Automation Script. If the filename extension is omitted, pulse program files will be located using the
known extensions starting with the newest extension – .jxp. The standard locations are searched to
find the file as described in the preceding section titled ‘Locating Support Files’.

Customizing the Filename
There may be multiple identical Methods or Experiments within a Job that vary only by their

settings and it is not optimal for each of them to produce a file with the same name. However, it may
be important to have parts of the filename be identical in order to group related data files together.

The SAVE AS statement gives the author of the Automation Script the ability to adjust the
name of the acquired data when it is stored on the Data Server. The filename String may contain
various special identifiers that will be replaced by the appropriate current values at the time the file is
stored. See the ‘Table of Substitute Identifiers’ following the ‘Statements’ section for the list of
recognized identifiers that can be used in building the filename.

The filename may be provided using a String value or a TEXT Type variable or constant.
The SAVE AS statement is optional and if it is not provided or evaluates to an empty String,

the name of the file will be determined by a customizable system preference (‘Filename Pattern’
found on the ‘Environment’ tab in the Spectrometer Preferences window). The default value of the
‘Filename Pattern’ preference is:

$(SAMPLE)_$(EXP.FILENAME)

This default form specifies that the data filename will ultimately be composed of the name of the
Sample followed by the ‘filename’ parameter defined in the Header section of the experiment-
filename-or-variable.
 If the ‘Filename Pattern’ preference is undefined or evaluates to an empty String then the
filename is set to be the ‘filename’ parameter defined in the Header section of the experiment-
filename-or-variable. If this also evaluates to an empty String, then the title of the Experiment Block
that is also used as the variable name holding the acquired data, data-name, will be used.
 After all evaluations are complete, any leading and trailing spaces will be removed from the
filename and any multiple spaces within the filename will be reduced to a single space to determine
the final storage name of the acquired data.

Optimizing the Parameters of the Acquisition
 The OPTIMIZE statement will cause the COLLECT statement to execute repeatedly until the
optimization function is minimized. The optimization function makes modifications to the specified
acquisition parameters to produce the “optimized” data.

The optimization syntax has the following form:

 OPTIMIZE (param1, param2, … paramn)
 LIMIT max-iterations mode
 CALL function
 WITH param1 = val1,1, val1,2, val1,n, val1,n+1;
 param2 = val2,1, val2,2, val2,n, val2,n+1;
 …
 paramn = valn,1, valn,2, valn,n, valn,n+1;

Automation Scripting Language EXPERIMENT - 29

AISDG JEOL

The parameters to the optimization function, which must be one or more names of
experimental acquisition parameters, are specified within parenthesis after the OPTIMIZE keyword.
These parameters will vary during the optimization stage.

The author can optionally impose a maximum number of collections that can execute. The
LIMIT keyword followed by a positive integer (or the keyword YES or NO) will specify the number
of collections that the optimizing loop is allowed to run. If the LIMIT statement is not specified or if
the YES keyword is used instead of a number, the maximum number of collections is set to be 100.
If LIMIT NO is specified, there will not be a maximum number of collections imposed on the
optimization.

WARNING! Specifying NO could potentially cause an infinite loop if the
optimizing function never converges! One cause of this could be that the values
of optimizing parameters do not change.

When a limit is put on the number of collections, the author of the Automation Script may

also specify whether the execution of the Method is to continue or terminate if the maximum number
of iterations is reached without convergence. Use the keyword CONTINUE or TERMINATE to
stipulate the desired behavior. If left unspecified, the default is to continue the Method as if the
optimization had converged at the iteration limit.

The optimizing function is specified after the CALL keyword. This function can be specified
as an expression within quotation marks or as a name of a Percival operator. Each optimizing
parameter should be included in the optimizing expression. A Percival operator that is used for this
purpose must be written such that it takes a single Delta data file Type parameter. Here is a
functional specification for an optimizing function:

function OPTIMIZER(fl : FILE) return NUMERIC is…

Finally, each optimizing parameter’s initial values are specified after the WITH keyword.

The syntax for specifying each parameter’s initial condition is by providing its name followed by an
equal sign and a comma separated list of numbers. There must be one more number in the list than
the total number of optimization parameters in parenthesis after the OPTIMIZE keyword. So, if three
(3) parameters are required for the optimization, then there must be four (4) initial values specified
for each of those parameters.

Adjusting the Acquisition Parameters
 Following the COLLECT statement (and the optional OPTIMIZE statement) is the portion of
the EXPERIMENT block where experimental parameters can be set and/or constrained. Experiment
parameters are given values using the SET statement and these same parameters may be constrained
using the CONSTRAIN statement. The syntax for a SET statement in an EXPERIMENT block is the
same as it would appear in a Method and so it will be described in its own section. Refer to the
section describing the SET statement. The main difference between the function of a SET statement
within an EXPERIMENT block as opposed to outside of an EXPERIMENT block is that the values
are assigned to Experiment parameters when within the EXPERIMENT block rather than to local
Method variables.

30 - EXPERIMENT Automation Scripting Language

JEOL AISDG

Here is an example:

 SET scans = 20;
 x_sweep = prior_data(“x_sweep_clipped”);
 x_offset = method_variable_name;

 The second line in the example above shows that values can be retrieved from parameters of
data files by following a data file variable with a parameter name within double quotation marks and
parentheses. In this example, prior_data is a variable or constant that contains a data file, and
“x_sweep_clipped” is the parameter name of the value that is desired.
 The SET statement in an EXPERIMENT block can make use of the same forms as the SET
statement of a Method by requesting a value from Namespace, from the Job’s attributes, from the
current Sample’s attributes, from a Percival operator call, or from a Service Manager call. However,
it is not possible to use the PROCESS clause here. Again, refer to the following description of the
SET statement for more details of the various ways values can be assigned.

Constraining Acquisition Parameters
 The CONSTRAIN statement may only be used to constrain NUMBER Type values. It is
unique to the EXPERIMENT block (it cannot be used outside of an EXPERIMENT block) and has
many optional components that aid in limiting the range of values that an experimental parameter
may be assigned. The following is the syntax of the CONSTRAIN statement:

 CONSTRAIN parameter bounds multiple modulo units;

Parameter is the name of the experimental parameter that is being constrained. Everything
after parameter is optional and if none of the optional items were specified, this statement would be
unnecessary. Each of the four optional parts can be independently used, mix-and-matched, to get the
desired constraint. The following paragraphs describe each of these options.

Bounds Constraint
 Bounds sets a minimum and/or a maximum value for the specified parameter. The author of
the Automation Script would write this using the following syntax:

 comparator literal-or-identifier

comparator is one of the comparison operators: <, <=, >, or >=. The author of the script can use
this as many times as desired, but really only one of the two less-than comparators and/or one of the
two greater-than comparators are necessary. So, it could be written:

 CONSTRAIN x_sweep > 0[ppm] <= sweep_limit;

where sweep_width could have been defined with the statement:

 CONST sweep_limit = 10[ppm];

This statement would ensure that the parameter x_sweep was greater than 0[ppm] and less than or
equal to 10[ppm]. A variable can also be used in place of a literal value as shown in the example
with the constant sweep_limit.

Automation Scripting Language EXPERIMENT - 31

AISDG JEOL

Multiplicity Constraint
 Another option to the CONSTRAIN statement is the multiple clause. This ensures that the
value is a multiple of or is divisible by a specified number. The multiple clause can be written in two
different ways:

 MULTIPLE OF positive-number mode;
or
 DIVISIBLE BY positive-number mode;

Positive-number is not necessarily a whole number but it must be greater than zero and the optional
mode is either the keyword INCREASE or the keyword DECREASE. The default is DECREASE if
the mode is not specified. Specifying 1 for positive-number would simply cause the result to be an
integer. Note that the sign of the value being constrained is not affected by this clause. For example,
INCREASE always finds the next value with higher magnitude (away from zero) and DECREASE
will find the next value with lower magnitude (towards zero).
 Here are some examples using a parameter named step that has the value 14:

 CONSTRAIN step MULTIPLE OF 5 INCREASE --step results to 15
 CONSTRAIN step MULTIPLE OF 5 DECREASE --step results to 10

 CONSTRAIN step DIVISIBLE BY 3 INCREASE --step results to 15
 CONSTRAIN step DIVISIBLE BY 3 DECREASE --step results to 12

Modulus Constraint
 The modulo clause ensures that the absolute value is greater than or equal to 0 (zero) and is
less than the specified positive-number by taking the modulus of the value. A whole number is not
required here. Examples using the same parameter as above with a value of 14 are:

 CONSTRAIN step MODULO 12 --step results to 2
 CONSTRAIN step MODULO 8 --step results to 6
 CONSTRAIN step MODULO 7 --step results to 0 (zero)

Units Constraint
 The last clause affecting a parameter is the units clause. The units clause forces the value to
have the proper units with the value or no units at all. To ensure that a value does not have a unit, use
the following:

 CONSTRAIN step WITH NO UNIT

The syntax to use in order to ensure that the value has a unit and that it is correct is:

 CONSTRAIN step WITH UNIT unit-literal FROM data-variable

where unit-literal is a valid unit from the ‘Table of Units’, following the ‘Statements’ section. For
example, to force a value to be in Hertz the author of the Script could write:

 CONSTRAIN param WITH UNIT [Hz];

32 - EXPERIMENT Automation Scripting Language

JEOL AISDG

When the optional FROM keyword is given, the unit of the current value will be converted to
the new unit-literal using information from the data file specified by data-variable. This is required
to convert between Hertz and PPM.

Concealing Experiments
 Experiments are normally accessible by the user to adjust its parameters. However, it is
possible for the author to hide an Experiment from users. If the CONCEAL keyword is specified
before the initial EXPERIMENT keyword then the Experiment will not be accessible by the user and
thus not available to be directly manipulated in a Job.

Preventing Automatic Download and Display
 Data will normally be downloaded to the local workstation and optionally shown in a
Processor window when acquisition completes if the options are enabled in the Master Console’s
Connections menu. The QUIET keyword can be used in front of the EXPERIMENT statement to
prevent the data from being automatically downloaded to the user’s workstation. This may be desired
for data that is collected that is not useful in and of itself other than for determining proper
initialization for a subsequent acquisition.

Examples
 The simplest example of the use of the EXPERIMENT block is:

EXPERIMENT Proton IS
 COLLECT “single_pulse”;
END EXPERIMENT;

The next example assumes that a scout experiment file is acquired and that two variables
named scans_var and min_sweep exist and are both of the NUMBER Type.

EXPOSE VAR scans_var : NUMBER = 16, HELP “Number of scans”;
EXPOSE VAR min_sweep : NUMBER = 2[ppm], HELP “Minimum sweep width”;
…

INTERIM SCOUT EXPERIMENT PreScout IS
 COLLECT “single_pulse_short”;
END EXPERIMENT;

EXPERIMENT Proton IS
 SAVE AS “s$(SAMPLE.ID)_book$(SAMPLE.NOTEBOOK)”;
 COLLECT “single_pulse”;
 SET
 scans = scans_var;
 x_sweep = PreScout(“x_sweep_clipped”);
 x_offset = PreScout(“x_offset”);
 CONSTRAIN
 scans > 0 MULTIPLE OF 8 INCREASE WITH NO UNIT;
 x_sweep >= min_sweep <= 10[ppm];
END EXPERIMENT Proton;

Automation Scripting Language FINISH - 33

AISDG JEOL

FINISH

The FINISH statement ends the execution of the current Method. Any statements that come
after this statement will not be executed. The FINISH statement has the following syntax:

FINISH WHEN expression;

 Any file(s) that had been created (acquired data, processed files, and printed files) by the
Method up to this statement will be preserved. The TERMINATE statement (described later) has a
similar function but will remove all files generated by the Method and stop the entire job.

The When Clause
If the WHEN clause is specified, the statement will only be executed if the expression

evaluates to a True value. Refer to the section titled ‘Boolean Expressions’ for how an expression
evaluates to a Boolean value.

The expression can also be written to obtain a Job attribute, a Sample attribute, or a
Namespace value. If the value obtained is not one of the False values, the Method will end.

FINISH WHEN JOB attribute expression;
FINISH WHEN SAMPLE attribute expression;
FINISH WHEN NAMESPACE path expression;

Attribute and path must be a quoted String literal value or a variable of the TEXT Type. If

expression is included, it must be written such that the value of the Job, Sample, or Namespace part is
the first value of the conditional test. For example, SAMPLE “count” > 0. If an expression is
not provided, then the value of the attribute or Namespace path alone will determine the truth state.

Examples
 The following two examples of the FINISH statement produce the same result and both
assume that a variable named quit_early has been previously defined and set appropriately.

VAR quit_early : BOOLEAN = FALSE;
…

IF quit_early THEN
 FINISH;
END IF;

The following line has the same effect as the IF block in the example above.

FINISH WHEN quit_early;

 The following examples will end the Method when a Sample contains an attribute named
“complete” that evaluates to a True value or when the Sample “count” attribute is greater than 10.

FINSIH WHEN SAMPLE “complete”;

FINISH WHEN SAMPLE “count” > 10;

34 - GROUP Automation Scripting Language

JEOL AISDG

GROUP

 The GROUP block prevents the statements contained within it from being interrupted by a
user or by the system. Like the way that a graphical design program can group multiple elements
together to be treated as a single entity, the statements within the GROUP block are treated as a single
uninterruptible step in Automation.

The GROUP block has the following syntax:

 GROUP
 statement-block
 END GROUP;

NOTE: It is recommended that the author of the Automation Script use the GROUP block
sparingly. It should be used only in cases where it is essential that the operations within the
group run completely to the end.

Example
 This example will print all the factorials from 1 to 100 preventing the user from interrupting
the calculations. The use of the GROUP block here is not essential – it is for illustrative purpose
only.

GROUP
 VAR f : NUMBER;

 REPEAT x TO 100 DO
 SET f = CALL factorial(x);
 INFORM “Factorial of $(x) is $(f)”;
 END REPEAT;
END GROUP;

Automation Scripting Language IF - 35

AISDG JEOL

IF

 The IF statement provides the capability to conditionally execute of a sequence of statements.
An IF statement decides which block of statements to execute (if any) at the time it is encountered.
Its decision can be based on the state of the Automation system, local Script variables (which include
Method parameters), parameters within data files, Namespace values, Job or Sample attributes, and/or
the results of a call to an external operator written in JEOL’s proprietary Percival programming
language.

An IF statement must contain at least one sequence of statements known as a statement block.
An expression is evaluated to determine whether a statement block will be executed. If the evaluation
of the expression results in a True value, the statement block immediately following the expression is
executed. Otherwise, the statement block is skipped and the next test (if any) is evaluated. Refer to
the section titled ‘Boolean Expressions’ for how an expression evaluates to a Boolean value.

An IF statement starts its decision-making process by evaluating the first expression. If the
result of the first expression is a False value, it then continues, in order, through each of the
expressions in the IF statement until it encounters an expression that evaluates to a True value. All
remaining expressions that come after the statement-block that executes will not be evaluated.

In its simplest form, the IF statement has the following syntax:

 IF expression THEN
 statement-block
 END IF;

The expression can also begin with or be replaced by a Job attribute, a Sample attribute, or a
Namespace value.

IF JOB attribute expression THEN…
IF SAMPLE attribute expression THEN…
IF NAMESPACE path expression THEN…

Attribute and path must be a quoted String literal value or a variable of the TEXT Type. If

expression is included, it must be written such that the value of the Job, Sample, or Namespace part is
the first value of the conditional test. For example, SAMPLE “count” > 0. If an expression is
not provided, then the value of the attribute or Namespace path alone will determine the truth state.

Compound IF Blocks
It is possible to provide additional expressions and statement blocks using the ELSE IF

construct as shown below.

 IF expression-1 THEN
 statement-block-1
 ELSE IF expression-2 THEN
 statement-block-2
 END IF;

 The ELSE IF block may be repeated as many times as necessary for each condition that a
solution requires.

36 - IF Automation Scripting Language

JEOL AISDG

What if no Expressions Match?
The last statement block of an IF statement can be executed if none of the prior expressions

result in a True value. This is accomplished by using the ELSE keyword without the IF keyword
immediately following on the same line. Basically, this informs Automation that if none of the prior
statement blocks are executed, then execute the last one. The following syntax shows this:

 IF expression THEN
 statement-block-1
 ELSE
 statement-block-2
 END IF;

In the previous syntax example, statement-block-1 will execute when the expression evaluates
to a True value, otherwise statement-block-2 will execute.
 Any number of expressions may be provided with statement blocks in an IF statement. The
ELSE block must always be last – just before the END IF.

Nesting IF Statements
 It is possible for the author of the Automation Script to embed an IF statement within other IF
statements. This is called statement nesting. Here we encounter the one place where white space is
important to the semantics of the statement. As noted previously, ELSE IF together on the same line
of the Script provides an additional expression and statement block for the IF statement. However,
when the IF keyword following an ELSE is not written on the same line of the Script, it is assumed to
begin a new IF statement. Here is an example:

 IF expression-1 THEN
 statement-block-1
 ELSE
 IF expression-2 THEN
 statement-block-2
 END IF;
 END IF;

This form is rather silly since it can be written more simply using the second syntax example
above (which is functionally equivalent). It does, however, illustrate the point that when the IF
keyword follows the ELSE keyword on different line of the text, a new IF statement is encountered.
This means that additional END IF keywords, to close the each inner IF statement, are required.

IMPORTANT: Always follow the keyword ELSE with the keyword IF on the same line of
text if you wish to add a test to the IF statement. Write the keyword IF on a new line if you
wish to begin a new IF statement.

Examples
 These examples of the IF statement refer to the RGB_Color enumeration example from the
previous section describing the ENUM statement. Suppose that our script has the following variables
defined:

Automation Scripting Language IF - 37

AISDG JEOL

VAR ready : BOOLEAN = FALSE;
VAR c : RGB_Color = “red”;

The following example will print the text “I’m Ready” if the ready variable is TRUE. If the
ready variable is not TRUE then the text “I’m Waiting” will be printed.

IF ready THEN
 INFORM “I’m Ready”;
ELSE
 INFORM “I’m Waiting”;
END IF;

 The next example will change the value of the variable c to the next color in the RGB_Color
enumeration. Before the IF statement, the value of the variable c represents the current color. If the
current color is “red”, then set the current color to “green”, but if the current color is “green”, set the
current color to “blue”. If the current color is neither “red” nor “green”, then it must be “blue”
(because that is the only other legal value for the variable c) so set the current color back to “red”.

IF c = “red” THEN
 SET c = “green”;
ELSE IF c = “green” THEN
 SET c = “blue;
ELSE
 SET c = “red”;
END IF;

 The following IF statement will set the value of the variable ready to FALSE when the
current value of ready is TRUE and the value of the variable c is “red”. If the current value of
ready is not TRUE, the first nested IF statement will not be executed and testing whether the value
of c equals “red” will not occur. This IF statement will also set ready to TRUE when the current
value of ready is not TRUE and the value of c is not “red”.

IF ready THEN
 IF c = “red” THEN
 SET ready = FALSE;
 END IF;
ELSE
 IF c /= “red” THEN
 SET ready = TRUE;
 END IF;
END IF;

The last example resets a Sample attribute if it evaluates to a True value.

IF SAMPLE “count” > 0 THEN
 SET SAMPLE SAVE “count” = 0;
END IF;

38 - INCLUDE Automation Scripting Language

JEOL AISDG

INCLUDE

 The INCLUDE statement provides access to the Methods and Types that are in a separate
Automation Script file.

Using External Automation Script Files

The INCLUDE statement has the following syntax to include an external script:

 INCLUDE “script-filename” TO DOMAIN domain-name;

Script-filename is the relative path or file URL that identifies the external Script file. The
script-filename must be between double quotation marks. Automation Script filenames typically end
with the .jaf extension, but it is neither necessary nor recommended to include the file extension in
the script-filename.

If the script-filename is a valid identifier (that is, the name of the file begins with a letter and
contains only letters, digits, and/or underscore characters) then the TO DOMAIN clause may be
omitted and the domain-name of the included script becomes the script-filename itself (without the
quotation marks, of course).

Identifying Methods and Types
 Domain-name is an identifier that is used to distinguish a Method that is within the included
file from another Method with the same name. Domain names are necessary to distinguish Methods
if there exists more than one Method with the same title from separate files. An example is:

my_automation_file.jaf contains:
ENUM Color is (“red”, “green”, “blue”);

METHOD Proton (IN a : Color = “red”) IS
…
END METHOD;

 Executing the Proton Method in the above file would be accomplished with the following:

INCLUDE “my_automation_file” TO DOMAIN otherScript;
…
VAR c : otherScript.Color = “blue”;

INVOKE otherScript.Proton(c);

Notice the added domain-name, “otherScript.”, to the front of the Color sub-Type and
to the Method title that we invoke from the included Script. If we had omitted the domain in the
INVOKE statement, it would have attempted to invoke a Method named Proton within the same file
and not the Proton Method that had been included from the ‘my_automation_file’ script.

Automation Scripting Language INCLUDE - 39

AISDG JEOL

Inclusion Functionality
 An Automation Script that is included into another Script is added as if the separate file was in
the main Script at the point of the INCLUDE statement. This means that an INVOKE statement of an
included Script could invoke a Method from the main Script. An example follows:

main.jaf contains:

METHOD Operate IS
 …
END METHOD Operate;

INCLUDE “my_separate_script” TO DOMAIN example;

METHOD Main IS
 INVOKE example.Separate();
END METHOD Main;

my_separate_script.jaf contains:

METHOD Separate IS
 …
 INVOKE Operate();
 …
END METHOD Separate;

Method Assertions

It is important to realize that the file my_separate_script.jaf could not be parsed
properly on its own since there is no Method with the title “Operate” that exists in that Script. To
avoid this problem, the author must include a Method assertion statement prior to the point of
invocation. This is accomplished by following the Method title with a semicolon and optionally
including the ASSERT keyword before the METHOD keyword. This causes the otherwise
problematic Script to load correctly on its own by claiming that a Method with the specified title will
exist at a later point, and in this case, will exist in a different file. Refer to the description of the
METHOD statement for more information about Method assertions.
 Therefore, after inserting the Method assertion, the file my_separate_script.jaf
should contain:

my_separate_script.jaf contains:

ASSERT METHOD Operate;

METHOD Separate IS
 …
 INVOKE Operate();
 …
END METHOD Separate;

Using this technique, the author of the Script can create a Method, like ‘Main’ in the above

example that invokes another Method from a separately included Script file. The included Method,
called ‘Separate’ in the example, then invokes the Method ‘Operate’ from the main Script as part of
the statements that it performs. Thus, Automation Scripts can include other Scripts that have
Methods defined that allow part of their job to be defined by the including Script.

40 - INFORM Automation Scripting Language

JEOL AISDG

INFORM

 The INFORM statement can be used to send a text message to Delta’s console, display a
message in a dialog window, or to log a message in the Job Queue log file. The syntax of the
INFORM statement is:

 INFORM warning-level WITH DATE AND TIME

 TO destination AND destination message;

The only item required after the INFORM keyword is the message text. The message can be
a single String or a series of Strings that are separated by commas. The author can specify a
translated message by using a single language translation identifier. A single variable name can also
be used in the place of message that will show the value of that variable.

How important is the message?
 The warning-level is an optional indicator to provide a level of concern about the message.
The six allowable warning levels (in the order of seriousness) are: INFO, STATUS, WARNING,
ALERT, ERROR, and FATAL. It is up to the receiver of the message to decide how to handle the
warning level.

When was the messaged displayed?
 If the WITH DATE clause is specified, the current date is added to the message. If the AND
TIME clause is also provided, the time is added to the message along with the date. The time can
only be included if the date is included.

Where will the message be displayed?
 Destination is where the message from the INFORM statement will appear. There are three
places to potentially send a message: Delta’s console, a dialog window, or the Job queue log file.
These three places are specified using CONSOLE, DIALOG, and LOG respectively. For destination,
use the keyword TO and follow it with one of the three destination keywords. A message can be sent
to more than one destination simultaneously by separating the destination keywords with the AND
keyword. Specifying the destination is optional. When it is omitted, the default is to display the
message on Delta’s console.

Using Special symbols
There are many special symbols that may appear within the message text that will be replaced

before it is displayed. The special symbols are formed by placing a word within parentheses and
preceding it with a ‘$’ character. The casing of the letters of the word within parentheses is
insignificant. The author may also include a constant, variable, or parameter defined in the
Automation Script into the message. See the ‘Table of Substitute Identifiers’ after the ‘Statements’
section for the list of recognized words that can be used in the message text.

Automation Scripting Language INFORM - 41

AISDG JEOL

Examples
Below are some examples of how the INFORM statement can be used. The first is a basic

message that will appear on Delta’s console.

INFORM “Beginning job”;

The following statement displays an alert level two-line message on Delta’s console.

INFORM ALERT “No value provided”, “Using default”;

Below, an identifier named count is used within the message. The $(count) notation will
be replaced by the value of the variable named count when it is displayed. The date will be added
to the beginning of the message as well.

INFORM INFO WITH DATE “Job counter = $(count)”;

The next statement displays a fatal message with both the date and time to Delta’s console.

INFORM FATAL WITH DATE AND TIME “Experiment Error!”;

This example will display a simple message in a dialog window.

INFORM TO DIALOG “Hello Dave.”;

This example will write a status message with the current date to both Delta’s console and the
Job queue log file.

INFORM STATUS WITH DATE TO CONSOLE AND LOG “Job Complete”;

The two INFORM lines in the next example will produce the identical results of printing out
the contents of a variable named count.

VAR count : NUMBER = 9;

INFORM count;
INFORM “$(count)”;

The following example shows how a language translation can be used.

TRANSLATE check_data ES “Compruebe por favor sus datos”;
 “Please check your data”;

INFORM ALERT check_data;

42 - INVOKE Automation Scripting Language

JEOL AISDG

INVOKE

 The INVOKE statement suspends the execution of the current Method (which for the
following explanation will be called Method A) and executes another Method (which will be called
Method B). Information may be passed from Method A to Method B through the parameter interface
defined by Method B. This is known as passing arguments to the invoked Method. When Method B
has completed, Method A resumes executing the statement that follows the invocation of Method B.

The syntax for invoking a Method is:

 INVOKE REF domain-name.method-title(argument-list);

Method-title is the title of the Method being invoked. Remember that the title can be specified
with or without quotation marks. Refer to the description of the METHOD statement for the rules
pertaining to how the title of a Method can be specified. The domain-name before the method-title is
required if the Method was made available from a separate file with the INCLUDE statement. See
the prior description of the INCLUDE statement.

Invoking a Method by Reference
 Normally when a Method is invoked, it is as if the Method was coded in the script at the point
of the invocation. All statements in the Method are duplicated. This provides the user the ability to
modify experimental parameters for distinct EXPERIMENT blocks that are within the invoked
Method. If the invoked Method contained a single EXPERIMENT block and was invoked three
times without the REF keyword, the user would see three distinct experiments – one for each
invocation of the Method.
 The REF keyword allows the author of the Script to treat the invoked Method as a single
instance. The invoked Method reference still runs like a duplicated Method, but the difference is that
any EXPERIMENT blocks within a referenced Method invocation are treated as the same
experiment. If the invoked Method contained a single EXPERIMENT block and was invoked three
times with the REF keyword, the user would see only one experiment – it is the same experiment
invoked three times through the Method. It is recommended that the author always use the REF
keyword when invoking a Method that does not contain an EXPERIMENT block multiple times.

Passing Data Through Parameters

The optional argument-list allows information to be sent to the Method. The values must be
placed between parentheses and separated by commas. The number of the arguments and the Types
of the values in the argument list are stipulated by the Method that is being invoked. There is no limit
to the number of parameters that a Method may have. Some examples of how Methods (with silly
names) are invoked:

Automation Scripting Language INVOKE - 43

AISDG JEOL

INVOKE method_with_no_params();
INVOKE external.method_with_one_param(1);
INVOKE “method with three params”(1, x, TRUE);

 Notice that the parentheses are required even if there are no arguments. Also notice that the
third invocation in the above examples specified the Method title with quotation marks and is passed
a value to that Method using a variable named x in the second position. Values can be passed as
literal constants or by using a variable name.
 Arguments may be given using the names of the parameters of the Method being invoked.
When arguments are specified with names, then the order in which they are specified is not important
and any prior arguments may be left unspecified without using NULL as a placeholder. The name of
the argument determines the ultimate position of that argument when the Method is invoked. To
name an argument, specify the name of the Method parameter to receive the value followed by the =>
(map to) symbol and then the value as usual.

METHOD meth(IN first : NUMBER = 0; IN second : NUMBER = 0) IS…

INVOKE meth(1, 2);
INVOKE meth(first => 1, second => 2); --same behavior as first line
INVOKE meth(second => 2, first => 1); --same behavior as first two lines
INVOKE meth(second => 2);
INVOKE meth(NULL, 2); --same behavior as third line

 The order and position of unnamed arguments is important. The value of each unnamed
argument will be assigned to the corresponding Method parameter in the same position. If there are
unnamed arguments, then those must be provided in the proper order before any named arguments.
Any named arguments may follow in arbitrary order.

NOTE: It is important to remember that if the mode of a Method parameter is specified as
OUT or as INOUT then a variable must be used to transmit information through that
parameter because variables are the only means of returning values.

 When NULL is used as an argument or when parameters are not specified, the default value
provided for that Method parameter is used. Each parameter’s default value is given where the
Method is defined.

Method Scoping and Visibility
 A Method may only invoke another Method if it has been defined prior to the point of its
invocation. A Method that can be invoked at a specific location is said to be “in scope” at that
location. There are four places where a Method could be defined so that it will be “in scope”.

• Outside of and prior to the current Method block:
METHOD B IS

…
END METHOD B;
…

44 - INVOKE Automation Scripting Language

JEOL AISDG

METHOD A IS
…
INVOKE b();
…

END METHOD A;

• Inside the current Method block and prior to the invocation:
MEHOD A IS

…
METHOD B IS

…
END METHOD B;
…
INVOKE b();
…

END METHOD A;

• Within an Automation Script file accessed via an INCLUDE statement prior to the invocation.
METHOD A IS

…
REMARK contains a Method B
INCLUDE “script_file” TO DOMAIN local;
…
INVOKE local.b();
…

END METHOD A;

• Invoking the current Method itself. This is known as “recursion”. Be careful to always
provide a mechanism by which the recursion can end!

METHOD Factorial(IN n : NUMBER = 1,
 INOUT result : NUMBER) IS

REMARK the ‘if’ provides the terminal case

IF n >= 2 then

SET result = result * n;
SET n = n – 1;

INVOKE REF factorial(n, result);

END IF;

END METHOD Factorial;
…
VAR f : NUMBER = 1;

INVOKE REF factorial(5, f);

INFORM TO CONSOLE “Factorial of 5 is $(f)”;

Automation Scripting Language LIMIT - 45

AISDG JEOL

LIMIT

 The LIMIT block restricts the statements contained within it to run within a specified amount
of time. The syntax of the LIMIT block is:

 LIMIT TIME maximum-duration DO
 statement-block
 EXPIRED
 expired-statement-block
 END LIMIT;

 The statements within statement-block will begin executing immediately. If all of the
statements in the statement-block complete within the time limit specified by maximum-duration the
statement after the LIMIT block will be executed next. If, however, the time limit expires before
every statement in the block can successfully complete, the remaining statements will not be
executed.

Specifying the Time Limit
 Refer to the section titled ‘Duration Syntax’ which describes how to provide a time limit for
the maximum-duration.

What Happens When the Time Limit Expires
When the time limit expires, the currently executing statement will complete but the

remaining statements will not be executed. Then, if an optional EXPIRED block is provided, the
statements in the expired-statement-block will execute before continuing with the statement following
the LIMIT block.

Examples
 A silly example to discover how many times it is possible to increment a number within a
short amount of time.

REMARK How high can we count in 10 seconds?

VAR count : NUMBER = 0;

LIMIT TIME 10 SECONDS DO

 REPEAT
 SET count = count + 1;
 END REPEAT;

EXPIRED

 INFORM “Count reached $(count) in one minute”;

END LIMIT;

46 - LIST Automation Scripting Language

JEOL AISDG

LIST

 A variable of the LIST Type may contain zero or more of values of any Type. The LIST
statement creates a sub-Type of the basic LIST Type that will enforce that the values within a variable
of the sub-Type conform to the specified property. The syntax to create a Homogeneous LIST sub-
Type (all values in the List must be of the same Type) is:

 LIST type-name IS OF base-type;

The author may also create a “key-value” pair (known as an “association”) LIST sub-Type using the
following syntax:

 LIST type-name IS ASSOCIATION;

This sub-Type enforces the rules that:

1. Each element of a value of this sub-Type must be of the LIST Type and must also contain two
pieces of information.

2. The first item in each element, known as the “key”, must be a String.
3. The Type and the value of the second item in each element, known as the “value”, is not

restricted.

Type-name is an identifier that will be the name of this sub-Type. Any statement after this
Type definition can use the type-name in any place where one of the basic Types can be used.

LIST Type Relationship
Note that a value of a LIST sub-Type may be assigned to any variable of the basic LIST Type.

However, a value of a basic LIST Type may only be assigned to a variable of another LIST sub-Type if
all of the values of the list are of the same Type (it is homogeneous) and the Type of the values match
the sub-Type.

Examples
An example of a LIST statement that defines a sub-Type named Numbers is:

LIST Numbers IS OF NUMBER;

LIST Assoc IS ASSOCIATION;

VAR L : LIST;
VAR N : Numbers;
VAR A : Assoc;

SET N = {}; --okay
SET N = {1, 2}; --okay
SET N = {“red”}; --error (String not allowed)
SET N = {1, “green”}; --error (String not allowed)

SET L = N; --okay

Automation Scripting Language LIST - 47

AISDG JEOL

SET L = {2, 4, 8};
SET N = L; --okay

SET L = {2, TRUE, “blue”};
SET N = L; --error (Boolean and String not allowed)

SET A = {{“one”,1}, {“color”,”red”}, {“hot”,TRUE}};

SET L = A; --okay
SET A = N; --error (List required for each element)
SET N = A; --error (Number required for each element)

48 - MACRO Automation Scripting Language

JEOL AISDG

MACRO

 A macro definition defines a sequence of Automation statements that can be inserted into the
Automation script with the macro expansion syntax. The text of the macro will be parsed as if it was
written directly in the script at the point of the macro expansion.
 The syntax to define a macro is:

 MACRO macro-name (macro-parameters) IS

statement-block
END MACRO macro-name;

and the syntax to expand a macro is:

 EXPAND MACRO macro-name (argument-list);

Description
The macro-name is a title that must be distinct within its scope level of the Automation Script

and it identifies the macro. A macro expansion statement references the macro-name to specify the
sequence of statements that should be expanded. The body of the macro definition, the statement-
block, is treated as a single String and is not parsed until it is expanded.

Macros can be defined anywhere in the script file and within any scope level except within
other macros. Macros can be expanded within a Method scope level and deeper. Macros cannot be
expanded within other macros.

Parameters & Arguments

Parameters are optional and can be used to infuse changes into the statement-block. Macro-
parameters is one or more identifiers separated by commas where each identifier may be optionally
followed by an equal sign and a default constant value. Unlike Method parameters, these parameters
do not require Type definitions because they are only used to identify areas where textual
replacements are to occur. For example, if there were a parameter named ‘id’ then anywhere within
the statement-block where $(id) is found would be replaced by the value of that parameter.

Parameters are assigned values by the argument-list in the macro expansion. The number of
arguments must match the number of parameters of the macro definition if defaults are not specified
and each parameter is assigned the value of the argument that is in the same ordered position in the
list. Each argument can be a literal String or a constant value that will be converted to a TEXT Type.
A NULL can also be used as an argument. When a NULL is used and a default value is provided for
the parameter in the same position, the default value will be substituted for the parameter at that
position. NULLs to not need to be provided if they are the last arguments of the Macro.

Textual replacements in the statement-block are performed anywhere that one of the
parameter names is detected surrounded by parentheses and preceded by a dollar sign. Any
replacement indicator that does not contain the name of one of the parameters will not be removed.

Examples
The simplest example of the MACRO statement is without parameters. In this example, the

entire line of EXPAND MACRO mac; will be replaced with the macro body which is the one line
INFORM “Hello”;. Running the Method named Macro_Test1 will send the message “Hello!” to
the user.

Automation Scripting Language MACRO - 49

AISDG JEOL

MACRO mac IS
 INFORM "Hello!";
END MACRO mac;

METHOD Macro_Test1 IS
 EXPAND MACRO mac;
END METHOD Macro_Test1;

The following example adds an exposed variable for the user to provide a value in the Method

parameters area. Since there are no macro parameters, the text $(your_name) is not altered and the
two lines of the macro will replace the single macro expansion line in the Method named
Macro_Test2 as-is. If the use supplies “Bill” as the value for your_name, then running the Method
named Macro_Test2 will send the message “Hello, Bill!” to the user.

MACRO mac_var IS
 EXPOSE VAR your_name : TEXT = "", HELP "Enter your name";
 INFORM "Hello, $(your_name)!";
END MACRO mac_var;

METHOD Macro_Test2 IS
 EXPAND MACRO mac_var;
END METHOD Macro_Test2;

The next example includes a single parameter named uname. The String “Bill” is passed as

an argument of the first macro expansion which will become the value of the parameter uname.
Thus, the text $(uname) will be replaced by the name “Bill”. The third expansion shows how the
default value of the parameter is selected by specifying NULL for the argument. The result of calling
Macro_Test3 is the three messages “Hello, Bill!”, “Hello, Steve!”, and “Hello, Fred!” being sent to
the user.

MACRO mac_param(uname = “Fred”) IS
 INFORM "Hello, $(uname)!";
END MACRO mac_param;

METHOD Macro_Test3 IS
 EXPAND MACRO mac_param("Bill");
 EXPAND MACRO mac_param("Steve");
 EXPAND MACRO mac_param(NULL);
END METHOD Macro_Test3;

Macro_Test4 below is very similar to Macro_Test3. You will notice that the macro definition

is identical except that the macro title was changed to help describe its purpose. In this case, we have
provided an exposed variable within the Method for the user to provide a value. For the argument,
we provide the text that will become new textual replacement indicator that will then be used when
the INFORM statement executes. Thus, $(uname) in the macro becomes $(your_name) when the
macro is expanded and placed within the Method. When the INFORM statement finally executes, it
will use the expanded macro content “Hello, $(your_name)!”. The system knows the value of
your_name and replaces it with the value that the user provided for the exposed variable. If the

50 - MACRO Automation Scripting Language

JEOL AISDG

user provides “Bill” as the value of your_name, then running the Method named Macro_Test4 will
send the message “Hello, Bill!” to the user.

MACRO mac_indirect_param(uname) IS
 INFORM "Hello, $(uname)!";
END MACRO mac_indirect_param;

METHOD Macro_Test4 IS
 EXPOSE VAR your_name : TEXT = "", HELP "Enter your name";
 EXPAND MACRO mac_indirect_param("$(your_name)");
END METHOD Macro_Test4;

The next example shows that macros can also be placed within Methods. This example is

very similar to Macro_Test4 above. It also adds a second parameter, uage, and provides an exposed
variable named age. If the user provides “Bill” and 42 for the values of your_name and age
respectively, then running the Method named Macro_Test5 will send the message “Hello, Bill! Are
you really 42?” to the user.

METHOD Macro_Test5 IS
 MACRO mac_inner(uname, uage) IS
 INFORM "Hello, $(uname)! Are you really $(uage)?";
 END MACRO mac_inner;

 EXPOSE VAR your_name : TEXT = "", HELP "Enter your name";
 EXPOSE VAR age : NUMBER = 21, HELP "Enter your age";
 EXPAND MACRO mac_inner("$(your_name)", "$(age)");
END METHOD Macro_Test5;

The following example builds upon the prior example by adding a Method parameter named

probeId along with a constant definition whose value is provided as the first argument to the
macro. During the macro expansion, the value of the variable notice (which is “Hello”) replaces
$(pre) in the macro body and the text “$(your_name)” replaces $(uname) in the macro body.
$(probeId) is not replaced because there is no macro parameter with that name. Again, if the user
supplies “Bill” for the value of your_name and leaves the value of probeId as “ABC”, then
running the Method named Macro_Test6 will send the message “Hello, Bill! Probe = ABC.”

METHOD Macro_Test6(IN probeId : TEXT = "ABC") IS
 MACRO mac_inner(pre = “Hi”, uname) IS
 INFORM "$(pre), $(uname)! Probe = $(probeId).";
 END MACRO mac_inner;

 EXPOSE VAR your_name : TEXT = "", HELP "Enter your name";
 CONST notice : TEXT = "Hello";
 EXPAND MACRO mac_inner(notice, "$(your_name)");
END METHOD Macro_Test6;

Automation Scripting Language METHOD - 51

AISDG JEOL

METHOD

The METHOD block is the basis for performing any task with Automation. The syntax of the
METHOD block is:

CONCEAL INTERACTIVE METHOD method-name (method-parameters)
 WHEN event IS
 CATEGORY categories;
 HELP help-text;
 PURPOSE help-text;
 PARAMETER param-name param-options;
 DURATION time-expression;

statement-block
END METHOD method-name;

Description

The method-name is a title that must be distinct within its scope level of the Automation
Script so that it identifies a single Method. A Method-name may be either an identifier or a String
that contains at least one character. If the method-name is specified as a String (that is, it is
surrounded by quotation marks), then there are no restrictions to the title other than the minimum
length. If the method-name is specified as an identifier, then it must conform to the rules of an
identifier. See the description of identifiers in the previous section titled ‘Definition of Terms’.

The method-name is required after the initial METHOD keyword but it may be omitted after
the END METHOD. If it is specified at the end, then it must match the name and form (String or
identifier) that is used at the beginning of the Method block.

NOTE: Although legal, it is recommended that the author abstain from using a period
character, ‘.’, in a Method title to avoid confusion. A period character is the domain
separator. Refer to the descriptions of the INCLUDE and INVOKE statements for more
information about Method domains.

Parameters

Parameters are one of the ways by which external information is transmitted to a Method and
are the only way that Methods can emit information and thus they are how a Method is able to
propagate information to subsequent Methods. See the INVOKE statement for details about
executing other Methods from within a Method. If a Method does not need to convey information,
then the method-parameters and parentheses surrounding them may be omitted. There is no limit to
the number of parameters that a Method may have.

If more than one Method parameter is required, each parameter must be separated by a
semicolon. Method parameters are provided using one of the following syntax options:

CONCEAL IN param-name : value-type = default-value param-options
CONCEAL INOUT param-name : value-type = default-value param-options
CONCEAL OUT param-name : value-type help

 A parameter definition may optionally begin with the keyword CONCEAL to hide the
parameter from the user. A parameter marked with the keyword CONCEAL will not be visible in the
Method attributes area on the Job tab of the Spectrometer Control window.

52 - METHOD Automation Scripting Language

JEOL AISDG

 Each parameter must have a mode (IN, INOUT, or OUT), a name specified by param-name,
and a Type specified by value-type. The name is used to reference the value of the parameter inside
the Method block and can be any word except a reserved word or the name of an instrument
parameter. The mode specifies the direction the information flows through the parameter.

• IN mode parameters allow data to be transferred into the Method. The value of an IN mode
parameter may change during the execution of the Method but the modified value will not be
preserved when the Method ends.

• OUT mode parameters allow data to be transferred out of the Method. This mode does not
initialize the parameter with a value when the Method begins execution. Instead, a calculated
result should be assigned to this parameter that is then provided to the calling Method when
the current Method successfully completes.

• INOUT parameters allow data to be transferred both in and out of the Method. It accepts the
value given to the parameter as its initial value as IN mode parameters do, and also passes the
potentially modified value back to the caller upon successful completion of the Method as
OUT parameters do.

Parameters are like variables that can be defined within a Method using the VAR statement.

Refer to the description of the VAR statement. A parameter’s name can be used in the same places
where variables are used. The subtle difference between a parameter and a variable is that the caller
provides the initial values for parameters whereas the Method predetermines the initial values for
variables. The values of variables are lost when the Method ends unlike INOUT and OUT
parameters. The caller is defined to be the Method containing the INVOKE statement which caused
the execution of the current Method. Values passed to a Method via the INVOKE statement provide
the initial value for the parameters.

Value-type may be any of the five basic Types defined in the Automation grammar
(BOOLEAN, NUMBER, TEXT, LIST, or DATA) or it may be a sub-Type defined prior to the Method
using the ENUM, NUMBER, or LIST statements.

Passive Parameter Mode
Regular (not concealed) IN and INOUT parameters have an additional option. When the

value of a parameter is changed, it may have an impact on the run-time duration of the Method and so
the duration time will be re-computed. If it is known that a parameter will not have an impact on the
duration then the parameter can be defined as a ‘passive’ mode parameter by inserting the PASSIVE
keyword before the IN or INOUT keyword. This will cause the time calculation to be skipped for
this parameter and it will also make the interface more responsive. By default, without the PASSIVE
keyword specified, parameters are defined with a mode set to ‘active’. However, the author of the
script may choose to add the ACTIVE keyword before the IN or INOUT keyword even though it is
neither required nor necessary.

Default Parameter Values
IN and INOUT parameter modes require a default value to be provided except when the

specified value-type is DATA. The default-value can be given in one of the following ways:

constant
JOB job-attribute ELSE constant
SAMPLE sample-attribute ELSE constant
NAMESPACE namespace-path ELSE constant
EVALUATE (expression) ELSE constant

Automation Scripting Language METHOD - 53

AISDG JEOL

 Parameters of the DATA Type cannot be initialized with the JOB, SAMPLE, NAMESPACE ,
or EVALUATE clauses. Only a constant String or an expression that results in a TEXT Type value
can initialize a DATA Type parameter.

Constant is a value that must be of the Type value-type -- the same Type as the parameter
being defined. Job-attribute is a String or variable representing the attribute of interest of the
currently running Job. Sample-attribute is a String or variable representing the attribute of interest of
the current Sample. Namespace-path is a String or variable representing the location of a value in the
Namespace Parameter Database. Expression is a Percival code expression that will be evaluated to
produce the initial value. More than one Job, Sample, Namespace, or Evaluate clause may be
specified when they are separated by an ELSE keyword before the optional final ELSE clause.

The optional ELSE clause provides a specific default value for the cases when the job-
attribute, sample-attribute, namespace-path cannot be found or when those values or the evaluation
expression cannot be resolved to an appropriate value of the required Type. If the ELSE clause is
omitted, an error condition could be raised prior to executing the Method. If an error is raised, an
attempt will be made to find an error handler Method since a Method cannot define its own error
handlers prior to its execution. If an appropriate error handler cannot be found that handles the error,
the Job will terminate. If an error handler is found, execution resumes in the Method in which the
error was handled.

Parameter Options: Dependencies
 The initial value of one parameter may depend on the specified initial value(s) of one or more
other parameters. In these circumstances, the author of the Automation Script can designate the
relationship between the parameters using the DEPENDS clause. The DEPENDS clause follows the
default-value with a comma and then using one of the following forms:

 DEPENDS ON parameter-list EVALUATE (expression) ELSE constant

 DEPENDS ON parameter-list ENABLE WHEN (Boolean-expression)

 The parameter-list is one or more identifiers separated by commas. If a parameter is listed in
the parameter-list it should naturally be part of the expression or Boolean-expression.
 A parameter that includes a DEPENDS clause of the first form will have its initial value
recalculated on the user interface whenever a parameter on which it depends is modified. The
expression is a Percival expression that will be evaluated to determine the new initial value of the
parameter. The constant in the optional ELSE clause will be the initial value when the expression
does not result in a legal value for the parameter.
 A simple example of a parameter dependency is:

 (IN str : TEXT = “”;
 IN len : NUMBER = 0, DEPENDS ON str EVALUATE (size(str));
 IN big : NUMBER = 0, DEPENDS ON len EVALUATE (10 * len))

 See Parameter Options: Relevancy below for a description of the ENABLE clause. Include
the ENABLE clause after a dependency clause when the relevancy of the parameter depends on the
value of one or more other parameters. In this case, the Boolean-expression would contain the names
of the other parameter(s) on which it depends.
 The two forms can be combined to make a third form which specifies a value dependency as
well as a rule for when the parameter is relevant to the Method.

54 - METHOD Automation Scripting Language

JEOL AISDG

 DEPENDS ON parameter-list
 EVALUATE (expression) ELSE constant,
 ENABLE WHEN (Boolean-expression)

NOTE: The DEPENDS clause cannot be included when the parameter or Method is
concealed by using the CONCEAL keyword or when the parameter’s mode is set to be OUT.

Parameter Options: Relevancy
 A Method parameter is normally always relevant to the Method, but there may be a time when
that is not true. A parameter that includes an ENABLE clause is said to be irrelevant to the Method
when the result of the evaluation of the Boolean-expression is False. An irrelevant parameter will
appear disabled so that the operator will be unable set or change its value in the Method attributes
area on the Job tab of the Spectrometer Control window.
 An example of when a parameter could become irrelevant is when it is only referenced in
certain cases. Such a case would be a Method that optionally prints a message and allows the
contents of the message to also be specified. The author could provide two parameters on the
Method: one to control the printing of the message and the other to specify the message itself. The
Method might be something like this:

 METHOD Message(IN acknowledge : BOOLEAN = TRUE;
 IN content : TEXT = “Ok”) IS
 IF acknowledge THEN
 INFORM content;
 END IF;
 END METHOD Message;

 Both parameters would be visible, active, and seem to have equally importance in the Method
attributes area. It would be better to cause the parameter named content to be enabled only when
the value of the parameter named acknowledge is set to be True. The parameter named content
becomes irrelevant to the Method when acknowledge is False. The Method definition describing
this relationship between its two parameters becomes:

 (IN acknowledge : BOOLEAN = TRUE;
 IN content : TEXT = “Ok”,
 DEPENDS ON acknowledge
 ENABLE WHEN (acknowledge = TRUE))…

 With the above parameter definition, when the operator sets the parameter acknowledge to
be False in the Method attributes area, the content parameter will be disabled.
 The DEPENDS clause at the beginning is only required when the relevancy of a parameter
depends on the value of another parameter. If the relevancy of a parameter depended on the time of
day, for example, the DEPENDS clause can be omitted. Assuming there exists a function,
time_of_day, that returned the number of hours since the previous midnight, the author could
create a Method with a parameter that is enabled after noon.

Automation Scripting Language METHOD - 55

AISDG JEOL

 METHOD Acquire(IN fast : BOOLEAN,
 ENABLE WHEN (time_of_day > 12)) IS…

NOTE: The ENABLE clause cannot be included when the parameter or Method is
concealed by using the CONCEAL keyword or when the parameter’s mode is set to be OUT.
The ENABLE clause also cannot be specified on its own if it had been previously specified at
the end of the DEPENDS clause.

Parameter Options: Help
A description of a parameter may be provided to the operator by following the parameter

syntax (including any other parameter options) with a comma, the HELP keyword, and one or more
mixed Strings or translation identifiers separated by commas. Parameter HELP is not required1 but
its inclusion is strongly encouraged so that other users who might use this Method may better
understand the purpose of each parameter and therefore be more apt to use the Method successfully.
The text of the help will be displayed on the Automation user interface where the Method parameter
input area is located. To provide help per locale, use the TRANSLATE statement (described later)
and place the translation identifier(s) after the HELP keyword.

An example of providing help with a parameter is:

IN print_data : BOOLEAN = FALSE, HELP “Print the data?”

Parameter Options: Alternative Syntax
 Another way to specify the options on a Method parameter is with a separate statement
following any CATEGORY, HELP, and PURPOSE statements. A Method parameter may only have
one of each of the option clauses so each can only be specified in the parameter definition or with this
syntax but not both:

PARAMETER param-name param-options;

param-name must be the name of a Method parameter that is not concealed and whose mode is either
IN or INOUT. The dependency clause is the same syntax as for specifying the dependency in the
parameter definition beginning with the keyword DEPENDS as shown above.
 The following example specifies the same dependency rules as the example above.

(IN str : TEXT = “”;
 IN len : NUMBER = 0;
 IN big : NUMBER = 0) IS

PARAMETER len DEPENDS ON str EVALUATE (size(str));
PARAMETER big DEPENDS ON len ENABLE (len > 0), HELP “long”;

Notice that the parameter definitions have had the parameter options removed and the same clauses
have been added to separate PARAMETER statements.

1 The HELP clause is required when the parser instruction #REQUIRE help = True is specified
previously in the Automation Script file.

56 - METHOD Automation Scripting Language

JEOL AISDG

Events
 As you may recall, Job execution progresses sequentially through every Method of the Job.
That is to say that each Method is executed once in the order in which they exist in the Job for each
sample of the Job. However, there is one exception to this rule: Methods that have been designed to
handle events will only execute when the designated event occurs. These Method may still be
invoked deliberately by calling them with the INVOKE statement. See the prior description of the
INVOKE statement. Methods that are written to handle events require the WHEN keyword with an
event name following the method-name. Method parameters are not permitted when a Method is
written to handle an event.

 METHOD Gracefully_End WHEN ABORT IS…

There are three events: PREPARE, COMPLETE, and ABORT.
• The PREPARE event occurs when a Job begins to execute. These Methods will run

automatically once prior to any other Methods in the Job.
• The COMPLETE event occurs when a Job successfully ends without error. The end of a Job

occurs when all repetitions for each sample in the Job complete. These Methods will also
automatically run once per Job. The FINISH and TERMINATE statements could cause the
Job to end early, and this is still considered a successful completion.

• The ABORT event occurs when a Job is cancelled or aborted or when it prematurely
terminates because of an error condition. A Job may be cancelled or aborted by a user or
externally by another device.

A nested Method (that is, a Method that is declared within a Method) cannot be designated as

an event handler. It is thus only valid to include the WHEN clause on Methods that are declared at
the outer-most scope level of the Automation Script.

Special Method Statements
The optional CATEGORY statement must be the first statement of a Method block.

Categories classify a Method providing a way to more easily find and choose the appropriate Method
for a task. One or more Strings, separated by commas, following the CATEGORY keyword, specify
the categories to which a Method will belong. The Method categories can be selected on the
Automation user interface to restrict the list of available Methods such that only the Methods that
match the selected categories will be visible. The category list can be a mixed series of Strings and/or
language translation identifiers. Refer to the TRANSLATE statement regarding language
translations.

The HELP statement is an optional single String or translation identifier that will succinctly
convey the purpose of a Method to the user. If a translation identifier is provided and it refers to a
multi-line translation, the first line only will be used for the purpose text.

The PURPOSE statement of a Method is also optional. When the PURPOSE statement is
specified, it should provide a short description of what the Method will accomplish when it is
successfully executed. It should also provide more detail than the HELP text and so it may contain
more than one line of text. A single translation identifier or one or more comma-separated Strings
must follow the PURPOSE keyword. If the PURPOSE statement is omitted, the text provided by the
HELP statement will be used.

The DURATION statement is also an optional part of the Method block and its expression
must result in a number with a unit of seconds when it is evaluated. Including this line lets the
Method quickly supply an indication of how much time it is expected to take when it runs

Automation Scripting Language METHOD - 57

AISDG JEOL

successfully. Method parameters, declared constants, exposed variables, and names of
EXPERIMENT blocks declared in the body of the Method may be referenced in the duration
expression. Only variables set directly in the parameter assignment section of the EXPERIMENT
block will affect the calculated time of the experiment – wildcard assignments will not work. The
expression is an estimate of time but it should be designed and written to be as accurate as possible.
See the section “Tips for Writing a Duration Statement Expression”.

Method Body
The body of a Method is the statement-block. It is a series of ordered operations that will

produce a desired result when executed. Any of the statements described in the ‘Statements’ section
(except for the EXIT and RETRY statements) may be utilized within the statement-block of a
Method.
 The Automation Script in the following Method expresses the simple classic “Hello World”
program example:
METHOD Hello_World IS
 INFORM “Hello, world”;
END METHOD;

 An example of a slightly more complicated Method that is parameterized and provides some
helpful description is:

METHOD Say_Hi(IN color : TEXT = “”) IS
 HELP “Say hello to the user”;
 INFORM “Hello, $(user)!”;
 IF color /= “” THEN
 INFORM “Your favorite color is $(color).”;
 END IF;
END METHOD Say_Hi;

 The following Method is a simple example of data passing in to and out from a parameter.
This Method also categorizes itself into a “math” category and provides detailed descriptions about
what it does.

METHOD Power2(INOUT n : NUMBER = 0, HELP “Result is 2^n”) IS
 CATEGORY “math”;
 HELP “Returns 2^n”;
 PURPOSE “Calculates the power of 2”, “of the parameter ‘n’.”;

 SET n = 2**n;

END METHOD Power2;

Concealing Methods
 Methods in an Automation Script at the outermost scope level are normally accessible by the
user to select and include in a Job. However, it is possible for the author to hide a Method from
users. If the CONCEAL keyword is specified before the initial METHOD keyword then the Method
will not be accessible by the user and thus not available to be directly included into a Job.

58 - METHOD Automation Scripting Language

JEOL AISDG

 One reason for possibly concealing a Method is that the Method is intended to be a support
routine for the other Methods in the Script file. The other Methods might invoke the concealed
Method, but users should not be allowed direct access to the Method.
 The CONCEAL keyword has no effect on Methods that are defined within other Methods
since these Methods are inherently concealed from the user. Nevertheless, the CONCEAL keyword
is permitted on all Methods regardless of where they are defined.
 By their nature, concealed Methods cannot be interactive and so the INTERACTIVE keyword
cannot be used when the CONCEAL keyword is present.

Methods that Interact with the Operator
 Methods are normally run by the Spectrometer without requiring human input once they are
submitted. There may be instances when input is required from the operator while the Automation is
running. In these instances, you can inform the system that a Method could make requests from the
operator while it runs by declaring the method to be interactive. To do this, precede the METHOD
keyword with the INTERACTIVE keyword.

Declaring a Method to be interactive permits the use of the PROMPT statement within that
Method and any Method that is invoked by that Method. The PROMPT statement is the mechanism
by which the Automation Script can request information from the operator while it is running. See
the PROMPT statement for more information.

Only Methods at the outermost scope level need to be declared to be interactive. The
INTERACTIVE keyword has no effect on Methods that are defined within other Methods.
Nevertheless, the INTERACTIVE keyword is permitted on all Methods regardless of where they are
defined.

Interactive Methods cannot also be concealed since concealed Methods cannot be submitted
directly by the operator. Therefore, the INTERACTIVE keyword cannot be used when the
CONCEAL keyword has been specified.

If a Method is declared to be interactive then it can invoke other interactive, concealed or
regular non-interactive Methods. However, a Method that was not declared to be interactive cannot
invoke a Method that is interactive.

Method Assertions

 The author of an Automation Script can assert that a Method will exist before it is defined
with a full METHOD block by ending the statement with a semicolon immediately after the name of
the Method and optionally adding the ASSERT keyword before the METHOD keyword. The syntax
for this is:

ASSERT CONCEAL METHOD method-name;

This statement informs Automation that a Method titled method-name will exist at some point
later in the Script. The method-name may be an identifier or a String. This assertion of existence
provides Methods with the ability to invoke each other (known as a circular reference). Refer to the
prior descriptions of the INCLUDE and INVOKE statements.

An example of a circular Method reference is:

ASSERT METHOD Second;

METHOD First IS
 …

Automation Scripting Language METHOD - 59

AISDG JEOL

 INVOKE Second();
 …
END METHOD First;

METHOD Second IS
 …
 INVOKE First();
 …
END METHOD Second;

WARNING! Circular references can cause infinite loops. Always remember to
use some form of conditional statement to break the cycle.

If a Method assertion specifies that the Method be concealed using the CONCEAL keyword

then the final definition of the Method must also specify that it is concealed. Similarly, if the
INTERACTIVE keyword is specified on the Method assertion then the INTERACTIVE keyword
must also be specified on the final definition. That is, the Method assertion and its full definition
must match in its use of the CONCEAL or INTERACTIVE keyword.

Method Genericity
The technique of using Method assertions can be used to generalize a Method by allowing all

or part of the operations of a Method to be defined by another Method in a separate Script file. This
is explained with an example in the prior section describing the INCLUDE statement, but here is a
quick example.

main.jaf contains:

METHOD Operate IS
 …
END METHOD;

INCLUDE “my_separate_script” TO DOMAIN example;

METHOD Main IS
 …
 INVOKE example.Separate();
 …
END Main;

my_separate_script.jaf contains:

ASSERT METHOD Operate;

METHOD Separate IS
 …
 INVOKE Operate();
 …
END METHOD;

60 - NUMBER Automation Scripting Language

JEOL AISDG

NUMBER

 The NUMBER statement creates a sub-Type of the basic NUMBER Type that constrains the
range of numeric values that can be assigned to variables of the sub-Type. The syntax to create a
ranged NUMBER sub-Type is:

 NUMBER type-name IS precision

 FROM number TO number STEP number
 unit-clause;

 Another way to create a ranged NUMBER sub-Type is by obtaining the number constraints
(bounds, precision, and unit) from Namespace. The syntax has the form:

 NUMBER type-name IS NAMESPACE namespace-path;

 A third syntax allows the author to create a listed NUMBER sub-Type. With this syntax, each
of the legal values are specified in number-list separated by commas. The order of the numbers will
be the order in which the operator will step through the available values. This syntax has the form:

 NUMBER type-name IS precision
 LIST sort-order (number-list)
 unit-clause;

Description
Type-name is an identifier that will be the name of this sub-Type. Any statement after this

Type definition can use the type-name in any place where one of the basic Types can be used. The
range of permitted number values is specified by the two numbers on the left and right of the TO
keyword. The first number should be smaller than the second number to properly specify a range.

Allowing Only Integer Numbers
When the INTEGER keyword is specified for the optional precision clause the sub-Type is

constrained to hold only numbers that have no fractional component. Assigning a number with a
fractional component to a variable of a ranged NUMBER sub-Type defined with the INTEGER
keyword will have its value rounded to the nearest integral value (±.5 will be rounded away from
zero). Assigning a value to a listed NUMBER sub-Type must be exact – no rounding will occur.

Limiting the Precision of Numbers
 When the PRECISION keyword is specified with a following non-negative integer for the
optional precision clause the sub-Type is constrained to round the numbers to the specified precision.
For example, if a precision of 2 is specified, then numbers would be accurate only to the hundredths
decimal place. For example, 1/3 = 0.33 and 1/8 = 0.13. Specifying PRECISION 0 (zero) for the
precision clause has the same effect as specifying the precision using the INTEGER keyword.
 Additionally, when values of this sub-Type are placed on the user interface, the precision
informs the widget of the step increment between adjacent values. If no precision is specified, the
default step size is 3 – that is, three digits of precision (an effective step size of 0.001).

Automation Scripting Language NUMBER - 61

AISDG JEOL

Specifying Values to Skip with a Step Size
 Without a specified step size, any number is a legal value for the sub-Type between the lower
and upper limits inclusive. However, a step size may be specified which restricts the allowable
values to be multiples of the step size from the lower limit. The step size must be a number greater
than zero. Therefore, legal values of the sub-Type can be expressed with the following formula:

lower_limit + n × step_size

where the value n is a non-negative integer such that the result is less than or equal to the upper limit.

Constraining the Unit
If a unit-clause is provided, then numbers assigned to a variable of the NUMBER sub-Type

must also conform to the proper unit. Omitting the unit-clause will not put any unit constraint on the
sub-Type allowing values with and without units to be assigned to variables of the sub-Type.

The unit-clause can be specified as WITH NO UNIT that will allow only number values
without a unit to be assigned to variables of the sub-Type. When the unit-clause is specified as WITH
UNIT unit-literal (where unit-literal is a valid Percival unit) then only values with the
properly specified unit can be assigned to variables of the sub-Type. Refer to the ‘Table of Units’
section for a list of units that can be used for the unit-literal.

Note that the following two unit clauses are equivalent (the second form uses the empty unit).

WITH NO UNIT
WITH UNIT []

Enforcing Listed Sort Order

 The author can be clear that the listed numbers should be in ascending or descending order by
including the keywords INCREASE or DECREASE accordingly for sort-order. This will make it
clear to other readers who are editing the script that the list must be sorted. The system will alert the
operator if numbers are out of the order when sort-order is specified. No alert is given if sort-order
is omitted.

NUMBER Type Relationship
A value of a NUMBER sub-Type may be assigned to any variable of the basic NUMBER Type.

However, a value of a basic NUMBER Type may only be assigned to a variable of a particular
NUMBER sub-Type if its value is within the range of permitted values and, if specified, has the
appropriate unit.

Required Attributes for Namespace Path
 A NUMBER sub-Type defined by Namespace is specified using the NAMESPACE keyword
and providing a namespace-path between quotation marks. The path in Namespace must contain a
LOWER and an UPPER attribute. The LOWER attribute naturally specifies the lower limit for the
sub-Type and the UPPER attribute specifies the upper limit.
 The Namespace path may optionally contain a PRECISION attribute that specifies the number
of digits of precision in the decimal for the sub-Type. If this attribute is not specified, the STEP
attribute is used; otherwise the value’s precision is not constrained. The PRECISION attribute
specifies how many digits of precision are requested for the value. The STEP attribute specifies the
distance between the legal values that lie within the lower and upper bounds.

62 - NUMBER Automation Scripting Language

JEOL AISDG

The Namespace path may also optionally specify a unit for the sub-Type as a String on the
UNIT attribute. If not specified, the sub-Type will not have a unit constraint. If specified as an
empty String, then units will not be allowed on values of the sub-Type like specifying WITH NO
UNIT. Otherwise, if the String represents a valid unit, that unit will be required on all values of the
sub-Type.
 Namespace paths for constraining a NUMBER Type are specified within a Namespace file
using the following form:
 namespace-path(attribute) = value
For example, to define a constraint named “ns_num_type” to restrict numeric values to be between 10
and 50 with three digits of decimal precision requiring a unit of Hertz the following lines would have
to be defined.
 ns_num_type(LOWER) = 10
 ns_num_type(UPPER) = 50
 ns_num_type(PRECISION) = 3
 ns_num_type(UNIT) = “Hz”

Examples
The following are examples of NUMBER statements and of the behavior of assigning values

to those sub-Types:

NUMBER Small IS PRECISION 2 FROM 1 TO 9;

NUMBER Sweep IS 2 TO 20 WITH UNIT [ppm];

NUMBER Int IS INTEGER 0 TO 1000 WITH NO UNIT;

NUMBER NS_Hertz IS NAMESPACE “ns_num_type”; -- from above

NUMBER Primes IS INTEGER LIST (2,3,5,7,11,13,17,19);

VAR N : NUMBER;
VAR S : Small;
VAR I : Int;
VAR W : Sweep;
VAR H : NS_Hertz;
VAR P : Primes;

SET S = 1.3; --okay
SET S = 1.1234; --okay (rounds down to 1.12)
SET S = 1.5678; --okay (rounds up to 1.57)
SET S = 10; --error (out of range)
SET S = 4.80[ppm]; --okay
SET S = 4[s]; --okay

SET N = S; --okay

Automation Scripting Language NUMBER - 63

AISDG JEOL

SET N = 9;
SET S = N; --okay
SET N = 0;
SET S = N; --error (out of range)

SET I = 25; --okay
SET I = 25.2; --okay (round down to 25)
SET I = 25.6; --okay (round up to 26)

SET I = 500[s]; --error (unit not allowed)

SET N = I; --okay

SET N = 2000;
SET I = N; --error (out of range)

SET N = 500[m];
SET I = N; --error (unit not allowed)

SET W = 2[ppm]; --okay
SET W = 1[ppm]; --error (out of range)
SET W = 10[Hz]; --error (incorrect unit)

SET N = W; --okay

SET N = 5[ppm];
SET W = N; --okay

SET N = 50[ppm];
SET W = N; --error (out of range)

SET N = 5[s];
SET W = N; --error (incorrect unit)

SET N = 10;
SET W = N; --error (unit required)

SET P = 2;
SET P = 23; --error (illegal value – 23 is prime but not in list)
SET P = 4; --error (illegal value)
SET P = 2.01; --error (illegal value)

SET N = 7;
SET P = N; --okay
SET N = 6;
SET P = N; --error (illegal value)

64 - ON ERROR Automation Scripting Language

JEOL AISDG

ON ERROR

 When an error occurs during the execution of a Method, the normal behavior is that the Job
will immediately terminate. The ON ERROR statement block gives Automation a chance to perform
some action if an error occurs. The author of the Automation Script may choose to ignore the error
and continue, stop executing the Method or current block, or execute a sequence of statements (to
perhaps correct the error). The ON ERROR statement has two syntactical forms:

 ON ERROR error-code action-to-take;

and

 ON ERROR error-code DO

 statement-block
 RETRY WHEN expression;

 END ERROR;

Error Codes
 The optional error-code is a String that specifies that the error handler should be triggered
only when that named error occurs. If error-code is omitted or specified with the keyword ALL, then
the handler will run when any error occurs regardless of the actual error. The following named errors
can occur while an Automation Script is executing:

Error String Raised by Automation when…
acq-error The EXPERIMENT block fails to collect data.
constraint-error The new value being assigned to a variable of a sub-Type is not

within the valid range specified by the sub-Type.
eval-error The evaluation of an expression could not be completed or it

resulted in an illegal value.
exec-error The execution of a service or Percival program causes an error or

returns an error condition.
mail-error Email could not be delivered. This could be because the

addressees were not in the right form or the attached files could
not be found.

print-error The PRINT or PRESENTATION statement could not complete
because of an error with the print queue.
The Presentation Layout file is not found or is not properly
formatted when executing a PRESENTATION statement.

process-error The PROCESS statement could not complete because there was
an error processing the data or the Processing List file is not found
or not properly formatted.

Automation Scripting Language ON ERROR - 65

AISDG JEOL

Error String Raised by Automation when…
storage-error A file is unable to be stored to or retrieved from a data server or if

a variable’s value is unable to be stored.
translation-error The TRANSLATE statement is unable to locate a valid translation

for the String.
tune-error The NMR instrument could not be tuned properly as requested by

the TUNE statement.
type-error An assignment is attempted and the Type of the new value does

not conform to the Type of the variable to which it is being
assigned. This can also occur while evaluating the parameter
requirements in a CALL statement or a Method invocation.

Actions

 For the first syntax, there are four possible keywords that can be used in place of action-to-
take. The following table describes the effect each has on the execution of the Script when it is used
to handle the error.

Action Keyword What it does…
CONTINUE Ignore the error and continue running the Automation Script

with the statement following the one that caused the error.
FINISH Stop executing the current Method and save all the data that

has been acquired up to the point of the error. If the error
occurred in a Method that was invoked from another Method,
then the calling Method will continue to run with the statement
following the Method invocation.

TERMINATE Stop executing the Automation Script and save all the data that
has been acquired up to the point of the error. If the Method
was invoked from another Method, the calling Method will
also terminate.

EXIT Stop executing the current REPEAT block and continue
running the Automation Script with the statement following the
end of the REPEAT block. The use of the EXIT action can
only appear within a REPEAT block.

Error Correction and Cleanup
 The second syntax of the ON ERROR statement gives the author of the Automation Script the
ability to alter the normal execution flow (possibly to correct an error) by running additional
statements before continuing normal operation. When an error is handled with this syntax, the
statements of statement-block are executed when the error is detected.

66 - ON ERROR Automation Scripting Language

JEOL AISDG

Attempting the Problem Statement Again
The RETRY statement causes Automation to re-execute the statement that caused the error. If

a RETRY statement is not executed, then the execution of the Script resumes with the statement
following the one that caused the error. Refer to the RETRY statement section for more details.

The WHEN clause can be optionally added to the RETRY statement. If the WHEN clause is
specified, this statement is only executed if the expression evaluates to a True value. Refer to the
section titled ‘Boolean Expressions’ for how an expression evaluates to a Boolean value.

Stopping the Execution
If the author of the Script wishes to stop the execution while handling the error, the FINISH,

TERMINATE, or EXIT statements can be used within the statement-block. The descriptions of these
three statements are described elsewhere in the ‘Statements’ section.

Modifying the Error Condition
 The author of the Automation Script can also change the error condition to any other error by
using the RAISE statement within the statement-block. Refer to the description of RAISE statement.

How Error Handlers are Chosen When an Error Occurs
 Error handling statement blocks can be embedded within other statement blocks. This means
that the error handling code is “scoped” like any other statement. When an error event occurs, the
following steps are taken:

1. A handler in the current scope level with an exact match of the error code will handle the
error if one is provided. Go to step 4.

2. A handler in the current scope that is designated to handle any error code (with the ALL

keyword specified for the error-code) will handle the error if one is provided. Go to step 4.

3. At this point, the current scope does not have an error handler written to handle this error. If

there is a previous scope level, change scope to it and go to step 1. Otherwise, an error
handler was not found to handle the error so the Job is immediately terminated.

4. Continue execution of the Method according to the error handler.

IMPORTANT: There is a default error handler that may be overridden. The default error
handler is defined to be:

ON ERROR ALL TERMINATE;

Therefore, if an error occurs and there is not an error handler defined for that specific error
code, the Automation Script will terminate because of the default error handler.

Automation Scripting Language ON ERROR - 67

AISDG JEOL

Examples
 Examples of the use of ON ERROR statements are:

METHOD “Get Param”(path : TEXT = “”) IS

 NUMBER OneToTen IS 1 TO 10;

 VAR num : OneToTen;

 REMARK Create a global handler to end this method smoothly.
 ON ERROR ALL FINISH;

 REMARK Handle a Type error with a message and constant.
 ON ERROR “type-error” DO
 INFORM “Specified path does not result in a number”,
 “Using zero”;
 SET num = 0;
 RETRY;
 END ERROR;

 The following statement in this Method will raise a “type-error” if the value of the Namespace
path does not return a NUMBER Type. Because the variable num is constrained by the sub-Type
definition, it could also raise a “constraint-error” if the value of the Namespace path less than 1 (one)
or if it is greater than 10 (ten).

 SET num = NAMESPACE path;

The following if statement will raise “eval-error” which will be handled by the global handler
because there is no error handler defined to handle this specific error.

 IF path + .5 THEN -- .5 should be written as 0.5
 INFORM “Bad Expression”;
 END IF;

END METHOD;

A variable could be defined within a Method block to determine if the script should attempt to
execute the problematic statement again:

VAR try_again : BOOLEAN;
…
ON ERROR DO
 INFORM “Script error!”;
 RETRY WHEN try_again;
END ERROR;

68 - PERCIVAL Automation Scripting Language

JEOL AISDG

PERCIVAL

 The PERCIVAL statement allows the author of the Automation Script to embed Percival
program code into a Script. Percival is the proprietary programming language developed by JEOL
that is executed by the Delta and Control software. Any embedded Percival code must conform to
proper Percival program syntax. It must be placed after three consecutive less-than characters and be
followed by three consecutive greater-than characters. These six characters set the Percival code
apart from the rest of the Automation Script statements.

 The syntax of the PERCIVAL statement is:

 PERCIVAL <<< Percival-code >>>;

Percival code is executed with the CALL statement and referencing the name of an operator
defined within the six angle characters. See the prior discussion of the CALL statement for more
details.

Syntax Errors Not Detected Unit Run-Time
It is important to realize that errors in the Percival code will not be detected until the

PERCIVAL statement is executed. Therefore, it is recommended that any code that is embedded in
the PERCIVAL statement be fully tested for correctness before the Script is run. It is beyond the
scope of this document to describe the syntax and semantics of the statements and constructs of the
Percival programming language.

User Interactive Statements
 Do not expect the text output statements in the Percival language (put_line, display, etc.) to
behave the same when run under Automation as opposed to how they operate when executed from
Delta. The mechanism by which text is displayed on the Master Console does not exist for
Automation being executed by the Control software. There is currently no plan to support these
statements. Use the INFORM statement in the Automation Script language (described later) to
display output text to the user.

NOTE: Presently, the Percival functions that print messages to the screen, pop-up dialog
boxes, or do any type of user interaction, will not operate properly when called from an
Automation Script. These functions should not cause an error, but the user will not see the
effects from these statements.

WARNING! Because of the above program note, the author of the script must
avoid using Percival functions that suspend regular program execution while
waiting for the user to respond to the program in any way. An example of an
operation to avoid is calling the Delta file dialog box.

Automation Scripting Language PERCIVAL - 69

AISDG JEOL

Example
The following is an example of how Percival code that defines a functional operation can be

incorporated into an Automation Script.

PERCIVAL <<<
 function FIND_MEAN(a : NUMBER,
 b : NUMBER) return NUMBER is
 return (a + b) / 2;
 end FIND_MEAN;
>>>;

VAR n : NUMBER;

SET n = CALL find_mean(0, 10);

 The above example defines a Percival function named “FIND_MEAN” to calculate the mean
(the average) of two numbers. At some point, later in the Script, a variable n is defined to contain a
NUMBER Type and then calls the Percival operator passing it two constant values: 0 and 10. The
variable n will contain the value 5 after the SET statement is executed.

Relationship of Automation/Percival Types
 The following table summarizes the Types that are available in Automation and the equivalent
Types provided by Percival. A Percival function should return the Percival Type that is the
Automation equivalent of the Type of the variable in the Automation Script that will hold the
resulting value.

Variable Type Comparisons
AUTOMATION PERCIVAL

BOOLEAN Boolean
TEXT String

NUMBER
Numeric
Universal
Number

LIST Set
DATA File

NOTE: It should be noted that there are fewer Types provided by the Automation syntax
than there are provided by the Percival language. Although there are similarities (for example
the NUMBER type), the Types are distinct and may be incompatible. Please be sure that the
Percival functions used by Automation will return values that Automation will recognize.
The Percival Types supported by Automation are: Boolean, String, Numeric, Universal,
Number, Set, and File.

70 - PRESENTATION Automation Scripting Language

JEOL AISDG

 PRESENTATION

 The PRESENTATION statement creates a formatted output by referencing a layout file that
was defined using the Page Layout Editor (available within the Delta software). The syntax of the
PRESENTATION statement is:

 PRESENTATION title TEMPLATE layout-filename

 WITH layout-data CONTEXT print-context destination;

Page Layout Template File
The layout-filename specifies the name of the Page Layout template file to use for generating

the output. The layout files also describe how many data files are required and how those data files
are put onto a printed page. The layout-filename can be either a String of characters within double
quotation marks or a variable of the TEXT Type that contains a filename. Page Layout template files
usually end with the .pmt extension, but specifying the extension is not necessary and it is
recommended that it be omitted from the filename when specified within an Automation Script. If
the filename extension is omitted, Page Layout template files will be located using the .pmt
extension. The standard template directory locations are searched to find the file as described in the
preceding section titled ‘Locating Support Files’.

The format of a Page Layout template file is beyond the scope of this document.

Referencing the Printed Data
 Like the PRINT statement, the PRESENTATION statement can generate an output file that
can be referenced by subsequent statements in the Script. See the sub-section with the same heading
in the following description of the PRINT statement for how to specify the title and how it will affect
the behavior of this statement.

Providing Data Files for the Page Layout
 Page Layout templates that require data obtain the data files through parameters. Each of the
data files for the layout is specified using the following syntax:

 DATA data-variable FOR PARAMETER positive-integer

A single data file should be provided for each required parameter of the Page Layout template
and each data file specification must be separated by the AND keyword. The data-variable is the
data file that will be passed to the template as a parameter and assigned to a Page Layout box. Data-
variable must be a reference to a JEOL NMR data file. If it is not, or if a parameter is omitted, the
area on the page designated for that file parameter will be empty.

Normally, each specified data file will be associated with the next consecutive Page Layout
template parameter (the first parameter being number 1). However, if FOR PARAMETER
positive-integer is provided, it overrides the parameter number of the Page Layout template
for the associated data file. If this is phrase is omitted, the next positive integer after the last assigned
parameter number (beginning with 1) will be assumed.

Automation Scripting Language PRESENTATION - 71

AISDG JEOL

Specifying a Print Context
A print context provides information to the printer about how the output should be generated.

A print context is optional and can be specified using the CONTEXT keyword.
The value for print-context can be a literal String, a TEXT Type identifier, or an identifier

previously declared by a PRINT CONTEXT statement. The print context supplied here will be used
for all of the output generated unless the context is specifically overridden within a destination. Refer
to the discussion of the PRINT CONTEXT statement for more details.

How and Where to Print
 Refer to the following discussion of the PRINT statement for a description of the syntax and
purpose of destination part of this syntax. These terms are used in the PRESENTATION statement in
the exact same manner as they are used in the PRINT statement.

Examples
 Below are examples of how the PRESENTATION statement can be used. Each statement
refers to the following file variables exp and d.

EXPERIMENT exp IS
 …
END EXPERIMENT;

VAR d : DATA = “my_data_file”;

 The following line prints a file in a page layout specified by the ‘single_layout’ template file
to the default printer.

PRESENTATION TEMPLATE “single_layout” WITH exp;

 The next example will print the layout to a printer identified by local and store a file on the
Data Server named “result.pdf”. Two files will be passed to the page layout template named
“layout2”. Notice that exp will be passed to the page layout template for parameter 1, and that d will
be passed for parameter 3. The area of the page reserved for parameter 2 will be left blank in the
output. Access to the generated PDF file is provided to future statements in the Automation Script
through the variable named my_pdf.

PRESENTATION my_pdf TEMPLATE “layout2”
 WITH DATA exp AND d FOR PARAMETER 3
 TO PRINTER local AND FILE “result.pdf”;

72 - PRINT Automation Scripting Language

JEOL AISDG

 PRINT

 The PRINT statement generates a full-page printed image of a data file that can be sent to a
printer or saved to a disk file. The syntax of the PRINT statement is:

 PRINT title DATA data-variable WITH parameter-requirements

 CONTEXT print-context destination;

Data-variable is the data file that will be printed and it must be a variable reference to a JEOL
NMR data file. The data file can be recently acquired by a preceding EXPERIMENT block or a pre-
existing data file on disk assigned to a DATA Type variable.

Referencing the Printed Data
To reference the printed data later in the Automation Script, the printed data must be given a

name. Title is the name of the generated file and, when specified, will cause the printed data to be
saved to a file (perhaps temporarily) so that a subsequent statement in the same Method can access it.
In effect, title becomes the name of a new constant value that contains a reference to the printed file
that will be generated. The form of this file will depend on the Operating System on which the
Automation Script is running. The author of the Automation Script is not required to declare a DATA
Type variable prior to this statement for title, but it is good practice to do so for clarity.

Printing Data Parameters
 If the parameter-requirements clause is included (beginning with the WITH keyword),
additional pages will be printed following the data graph that will show the acquisition parameters
and their associated values. There are a few forms for this clause described below.

Clause form What is printed
WITH PARAMETERS Prints the set of generally useful parameters. This

parameter list is stored in the Namespace path:
parameter_filters.Print_Information

WITH ALL PARAMETERS Prints every acquisition parameter stored with the data.
WITH PARAMETER LIST name Prints a custom set of parameters by specifying a

filename or Namespace path to locate the custom
parameter set. The following rules are followed, in
order, to locate the parameter set:
1. If name begins with “namespace::”, use the specified

Namespace path (following the two colons) for the
parameter set.

2. Read the disk file with the exact name.
3. Read the disk file with the filename: “name.params”.
4. Read the Namespace path: “parameter_filters.name”.
5. Use the set of generally useful parameters for printing.

WITH PARAMETER LIST var Prints the contents of var, a variable of the LIST Type
that represents a set of parameter names to be printed.

WITH PARAMETER LIST (list) List is one or more comma separated Strings. Each
String is the name of a single parameter to be printed.

Automation Scripting Language PRINT - 73

AISDG JEOL

Specifying a Print Context
A print context provides information to the printer about how the output should be generated.

A print context is optional and can be specified using the CONTEXT keyword.
The value for print-context can be a literal String, a TEXT Type identifier, or an identifier

previously declared by a PRINT CONTEXT statement. The print context supplied here will be used
for all the output generated unless the context is specifically overridden within a destination. Refer to
the discussion of the PRINT CONTEXT statement for more details.

How and Where to Print
 The last optional item of the PRINT statement is the destination – where the output is to be
printed. The destination is specified using the following syntax:

 TO target AND target

where the target is specified as the printer given in the Job attributes:

 JOB PRINTER CONTEXT print-context

or as a specific printer:

 PRINTER printer-name CONTEXT print-context

or as a file destination:
 FILE REF output-name CONTEXT print-context

Notice that the printer-name is optional. When a specific printer is not named, the
instrument’s default printer will be used.

The optional print-context provided on a specific target will override the general print-context
described earlier. It follows the same syntactic rules as the general CONTEXT clause above.

In the case where a title is provided to reference the data later in the Script and more than one
FILE target is given, the REF keyword may be used to specify which of the generated output files is
to be used as the file that is to be referenced. The REF keyword can only be specified on one file
output destination. If REF is omitted, the first file generated will be the file that is referenced by
title.

Specifying Multiple Destinations
The AND clause can be included to send the output to multiple targets. Using AND

repeatedly will cause the output to be sent to as many targets as specified. Printer-name is a String or
variable of the TEXT Type that names a specific network printer. Output-name is the name of the file
to which the results of the PRINT statement will be stored on the default Data Server. The filename
extension provided on the output-name will impact the format of the output file.

Default Behavior
If a destination clause is omitted but a title is provided, a temporary PDF file will be

generated and stored with the name that is given by title. However, Automation will attempt to locate
a default printer to print the data file when a destination clause and the title are both omitted. If a
default printer is found, a data image will be sent to it for printing.

74 - PRINT Automation Scripting Language

JEOL AISDG

Examples
 The following examples of the PRINT statement use a DATA Type variable, d, that could have
been created with an EXPERIMENT block, a PROCESS statement, or with a VAR statement that
loads a data file like:

VAR d : DATA = “my_data_file”;

The following line prints the data d to the default printer.

PRINT DATA d;

 The following line will generate a temporary PDF file named “ref.pdf” which will contain an
image of the data as well as a second page containing a list of the data file’s acquisition parameters.
The constant pref may be used later in the script to reference the printed data file.

PRINT pref DATA d WITH PARAMETERS;

 The following line will try to print to the printer specified by the Job attribute “printer”. If the
“printer” attribute is found and names an actual printer on the network, the data and its acquisition
parameters will be sent to it to print.

PRINT DATA d WITH PARAMETERS TO JOB PRINTER;

 The following line will try to find the printer named “inkjet” and, if found, will send the data
and its acquisition parameters to it to print.

PRINT DATA d WITH PARAMETERS TO PRINTER “inkjet”;

 The following line is a combination of two previous examples with the exception that the
name of the generated PDF file will be “result.pdf”. Aside from that difference, both a hard copy and
a PDF file will be generated with a statement like the following example.

PRINT pref DATA d WITH PARAMETERS
 TO JOB PRINTER AND FILE “result.pdf”;

Automation Scripting Language PRINT CONTEXT - 75

AISDG JEOL

PRINT CONTEXT

 The PRINT CONTEXT statement declares a context for printing that can be used to control
the output generated by the PRINT and PRESENTATION statements. Create and use a printing
context to ensure that the settings of the printer are correct for the output being generated. The syntax
of the PRINT CONTEXT statement is:

 PRINT CONTEXT printing-context IS

attribute-assignment;
 END PRINT CONTEXT;

Printing-context is an identifier that becomes the name of the group of attributes that define
the printing context. This identifier can be used in the CONTEXT clause of any subsequent PRINT
and PRESENTATION statements.

An attribute-assignment is made up of an identifier that is followed by an equal sign and a
value for that identifier. The author can (and usually will) supply more than one attribute-assignment
lines in a PRINT CONTEXT statement and each line must be terminated with a semicolon.

Print Context Attributes
A print context attribute can have any name (including reserved keywords). The following

table shows the attributes and their Types that are recognized by the Automation printing system.

Attribute Name Type Required Legal Values
blank is unrestricted

border BOOLEAN
border_width NUMBER >= 0
bottom_margin NUMBER >= 0
color BOOLEAN
contour_thickness NUMBER >= 0
copies NUMBER >= 1
data_thickness NUMBER >= 0
deconvolution_thickness NUMBER >= 0
deconvolution_fixed_colors BOOLEAN
fda_21cfr11 BOOLEAN
font_name STRING
font_size NUMBER >= 1
footer STRING
footer_on_page_one BOOLEAN
geom_square BOOLEAN
grid_grey_scale NUMBER 0 .. 100
header STRING
header_on_page_one BOOLEAN
integral_thickness NUMBER >= 0
left_margin NUMBER >= 0
neg_contour_grey BOOLEAN
neg_contour_grey_value NUMBER 0 .. 100

76 - Automation Scripting Language

JEOL AISDG

Attribute Name Type Required Legal Values
blank is unrestricted

orientation STRING LANDSCAPE, PORTRAIT,
REVERSE_LANDSCAPE,
REVERSE_PORTRAIT

page_scale NUMBER >= 0
paper_height NUMBER >= 0
paper_name STRING
paper_width NUMBER >= 0
parameters BOOLEAN
parameters_location STRING LEFT, RIGHT, TOP, BOTTOM
process_list BOOLEAN
right_margin NUMBER >= 0
ruler_thickness NUMBER >= 0
tessellate NUMBER 2 .. 64
top_margin NUMBER >= 0

Examples
 The example below declares a printing context with a few commonly used attributes.

PRINT CONTEXT High_Quality IS
 border = TRUE;
 color = FALSE;
 tessellate = 64;
 geom_square = FALSE;
 orientation = “Landscape”;
END PRINT CONTEXT;

 This example uses a variable to set a value to one of the attributes.

ENUM Page_Positions IS (“Left”, “Right”, “Top”, “Bottom”);

EXPOSE VAR param_pos : Page_Positions = “Left”;

PRINT CONTEXT MoveParams IS
 parameters = TRUE;
 parameters_location = param_pos;
END PRINT CONTEXT;

Automation Scripting Language PROCESS - 77

AISDG JEOL

PROCESS

 The PROCESS statement is used to process a data file and in so doing create a new instance
of the original data modified by the processing. This statement can be used on its own or as part of
an SET assignment statement. The full syntax of the PROCESS statement is:

 PROCESS DATA data-variable WITH process-list-filename

TO destination-variable SAVE AS destination-name;

 The data to be processed is specified by data-variable. The data-variable must be a
previously declared variable of the DATA Type or the title of a prior EXPERIMENT block.

Processing List Options
Each recently acquired Delta data file contains an intrinsic processing list that may be used to

process the data. If the PROCESS statement does not specify a specific processing list to use, the
intrinsic processing list within the data file will be used to process the data. Typically, this processing
list is more than adequate. For the instances when the intrinsic processing list is known to be
insufficient, the WITH clause can be included to override the intrinsic processing list with an
alternate processing list. Including the WITH clause will process the data using the commands within
the processing list file specified by process-list-filename. The process-list-filename may be a literal
filename within double quotation marks or a variable of the TEXT Type that contains the filename.
Automation will try to locate this file by looking in the standard locations as described in the section
titled ‘Location of Support Files’.

Alternatively, the ELSE keyword can be used in place of the WITH keyword. This informs
the PROCESS statement to use the intrinsic processing list if it exists within the data file. If an
intrinsic processing list is not found, the alternate processing list will be used. This may be necessary
if a data file requires processing but it is not known if an intrinsic list is present within the data file.

Process-list-filename should be specified with a relative path. Processing list filenames
usually end with the .list extension, but the .list extension is not required and it is
recommended that the extension be left off. Names like, “1dh.list”, “1dh”, “plot/1dh_plot” are valid
processing file references.

Referencing the Processed Data
 The TO destination-variable clause is optional and when it is not specified, the newly
processed data will replace the data in data-variable and the old data reference will be lost. The
actual data file will not be deleted – only access to the data from the Automation Script will be lost.
When the TO clause is included and it is specified to be a variable other than data-variable, the newly
processed data will be stored in the variable specified by destination-variable. The author of the
Automation Script may but is not required to have previously declared a DATA Type variable for
destination-variable. A variable will be created automatically if one with the specified name was not
previously declared.

Where to Store the Processed Data
 Normally the processed data will not persist after the Method ends, but if you want to keep the
data, then you must specify a storage filename with the SAVE AS clause. The data will then be
stored on the Data Server with the name specified by destination-name that is either a literal name
within double quotation marks or a variable of the TEXT Type containing the name.

78 - PROCESS Automation Scripting Language

JEOL AISDG

Examples
 The following are all valid PROCESS statements that assume two DATA Type variables
named d and f exist. d and f could have been acquired by an EXPERIMENT block or simply be
references to pre-existing files opened with a VAR or CONST statement.

PROCESS DATA f;

PROCESS f ELSE “1dh”;

PROCESS f WITH “plot/1dh_plot” TO d;

PROCESS f SAVE AS “my_processed_data”;

PROCESS f TO d SAVE AS “my_processed_data”;

Processing With Assignment
As mentioned earlier, the PROCESS statement can be used in the new value part of an SET

assignment statement. The only difference with using this form is that the TO clause is not permitted
since the destination variable is provided by the assignment variable. Examples of this form are:

SET d = PROCESS f;

SET d = PROCESS f WITH “1dh”;

SET d = PROCESS f SAVE AS “my_processed_data”;

 The last of the three examples above has the same effect and is equivalent to the last line of
the previous example group.

Automation Scripting Language PROMOTE - 79

AISDG JEOL

PROMOTE

The PROMOTE statement preserves the values of one or more Namespace paths beyond the
current operating scope level. The syntax of the PROMOTE statement is simply:

 PROMOTE path AND path TO instrument-scope;

A path may be specified with the keyword SHIMS so that all of the current shim parameter
values will be preserved to the specified scope-level. A path can also be specified with a literal String
value that represents a Namespace path or a variable that contains a String. More than one path may
be specified by separating each path with the AND keyword.

Instrument Scope Levels
 The instrument-scope specifies the extent to which the Namespace values will be preserved.
It is specified using one of the keywords from the following table:

Inst. Scope Description
USER This is the outermost instrument scope level and is in effect while an operator

has ownership of the spectrometer. This will occur when an operator
intentionally becomes an owner (by depressing the “ownership” button on the
Spectrometer Control window) or when a queued Job begins to run.

PROJECT This instrument scope level is currently not supported and will be treated as if
the USER scope was specified. In future versions, this instrument scope level
will become effective when the Project is loaded prior to a queued Job being
run and will end when after the Job is finished and the Project session is over.

JOB This instrument scope level becomes effective immediately when a queued
Job begins to run and it will remain in effect while the Job is running which
could possibly be over multiple Samples.

SAMPLE This instrument scope level becomes effective when a Sample is loaded into
the spectrometer and ends when the Sample is ejected or when the Job is
finished, whichever occurs first.

METHOD This instrument scope level is the current operating scope level of a running
Job. Specifying the instrument-scope with METHOD will have no effect. It
is allowed just in case a lower instrument scope level becomes necessary.

Examples

 The following statements preserve the shim values to the USER instrument scope level and
the Receiver Gain to the JOB instrument scope level.

PROMOTE SHIMS TO USER;
PROMOTE “temp_state” TO SAMPLE;

 The following preserves both the shims and the Receiver Gain in a single statement.

PROMOTE SHIMS and “temp_state” TO SAMPLE;

80 - PROMPT Automation Scripting Language

JEOL AISDG

PROMPT

 The PROMPT statement allows the Automation runtime system to obtain information from
the operator while a Job is running. Only Methods that have been declared interactive (by using the
INTERACTIVE keyword when defining the Method block) can utilize the PROMPT statement. The
operator must have some knowledge that the Job they will be submitting requires them to remain by
the console to supply the responses to the prompts. These types of interactive Methods will be
identified by a special icon next to its name.
 The PROMPT statement will ask a question by displaying the query over the Message Area of
the Spectrometer Control tool and expect the operator to respond by providing an answer to the
question. Depending on the type of answer the system is expecting in response, the operator could be
required to type a value into a text box, choose a value from an enumerated list, or press a button.

The syntax of the PROMPT statement is:

 PROMPT question TO variable

 style option-list DEFAULT value ICON icon-name;

The PROMPT statement can be used in an assignment statement as well in which case the TO

clause can be omitted. Assuming a variable named r exists, this form has the syntax:

VAR r …;
SET r = PROMPT question
 style option-list DEFAULT value ICON icon-name;

The author could have declared the variable r and initialized it with the result of a PROMPT
statement, like:

VAR r : type = PROMPT question
 style option-list DEFAULT value ICON icon-name;

but the variable r cannot be exposed. The following statement is illegal because of the use of the
EXPOSE keyword before the VAR declaration.

 EXPOSE VAR r : NUMBER = PROMPT “How many scans?”;

Ask a Question
The PROMPT statement is for obtaining data from the operator that cannot be known at the

time the Job is submitted. The question following the PROMPT keyword should be a literal String or
Text variable that is formed as a question with enough information for the user to be able to correctly
answer the question using the options available.
Use the INFORM statement to send a message to the operator without needing a response.

NOTE: If the information that the Method needs can be known prior to submitting the
Job, then it is much better to use a Job attribute, Method parameter, or exposed variable to get
the necessary values into the system. In this way, the operator does not have to remain by the
console to answer the prompts that appear.

Automation Scripting Language PROMPT - 81

AISDG JEOL

What Choices for Responding Will the Operator See?
 Without an option-list, the operator will see a simple input box to type any text value and a
button labeled ‘Continue’ which will send the response back to Automation. In this mode, the value
entered will be evaluated to determine if it can be converted into a NUMBER or BOOLEAN Type. If an
option-list is provided, it lists the values from which the operator can choose for the response value.
The style is a keyword that indicates how to display the values. Style can be set to BUTTONS or
OPTIONS. If the BUTTONS keyword is used, then each possible response will be displayed as a
button and the response will be sent when the user clicks on one of the buttons. Up to four buttons
can be displayed. If there are more than four values in the option-list then the style of BUTTONS
will be ignored and will be automatically set to OPTIONS. With a style of OPTIONS, an
enumeration widget will be displayed to let the user choose one from a drop-down list.
 Each response value is specified in the options-list separated by commas. There must be at
least two possible responses in the option-list. Each response can be specified only with the value
itself or optionally with a textual representation. The values can be of any Type or a variable.
Specifying the values alone would look like this:

 OPTIONS 8, 16, 32, 64

The person answering the question would see a drop-down list with the numbers in it. Specifying the
values with a textual representation might look like:

 OPTIONS

 SHOW 8 AS “Quick”, SHOW 16 AS “Fast”,
 SHOW 32 AS “Normal”, SHOW 64 AS “Long”

In the above case, the operator will see the choices as “Quick”, “Fast”, “Normal”, and “Long” in a
drop-down list, and the response will be the integer value associated with the text value chosen. For
example, if the operator selects “Fast” then the value of 16 will be returned.

The Probable Response
 The value following the DEFAULT keyword is what will be the suggested response value. It
will be the actual value returned if the operator does not respond within the time allotted by the
system configuration. This default response value must have the same Type as the variable to which
it will be assigned. In the second syntax example above, the value must match the Type of r.

Alert Icon
 A small image (icon) can be shown with your question to give the operator a clue as to what
kind of question is being asked. The icon desired is specified after the ICON keyword. If the ICON
clause is not specified or if the icon file cannot be found, a simple question mark icon will be shown.
 The six icon keywords that can be used to produce three different icons are shown in the
following table.

Keyword Icon Name Icon

INFO, STATUS help_bubble.rgb

WARNING, ALERT alert.rgb

ERROR, FATAL stop.rgb

82 - PROMPT Automation Scripting Language

JEOL AISDG

Examples
 This simple example will prompt the operator to name a file with an input box.

VAR filename : TEXT;
PROMPT “Name of the data file?” TO filename;

 The example below will prompt the user to increase the scans but will return 0 if the operator
does not respond before the allotted time allowed.

VAR scans : NUMBER;
PROMPT “Could not reach adequate signal/noise. Do you want to
 increase scans?” TO scans
 OPTIONS 64, 96, 128, 192, 256, 384, 512, 768, 1024 DEFAULT 0;

 The next example asks the operator if they thought the acquisition time was too long and will
show buttons with “Yes” and “No” options.

VAR too_long : BOOLEAN;
SET too_long = PROMPT “Was the acquisition time too long?”
 BUTTONS SHOW True AS “Yes”, False AS “No” DEFAULT False;

 Like the previous example, but we now show three options.

VAR feedback : TEXT;
SET feedback = PROMPT “How was the acquisition time?”
 BUTTONS
 SHOW “short” AS “Too fast”,
 SHOW “long” AS “Too slow”,
 SHOW “fine” AS “Okay”
 DEFAULT “fine”
 ICON “help_bubble”;

Automation Scripting Language RAISE - 83

AISDG JEOL

RAISE

 The RAISE statement allows the author of the Automation Script to cause a named error
condition to occur which can be handled by an ON ERROR statement. The occurrence of an error
condition, either intentionally with the use of this statement or because of a programmatic error, is
known as an error being “raised”. See the prior description of the ON ERROR statement.

The syntax of the RAISE statement is:

 RAISE error-code WHEN expression;

Error Codes
 The error-code is a String naming the error to be raised. It can be one of the standard error
codes described in the ON ERROR section or a String of the author’s whim. For the sake of other
user’s understanding the script, it is recommended that an error-code String be defined to describe
the error condition as best as possible.
 Although the error-code is a String literal, the instrument operator will not see the value of the
error-code. If you want to inform the operator of the problem, the author should use the INFORM
statement prior to raising the error condition.

The When Clause
If a WHEN clause is specified after the error-code, the error condition is raised only when the

expression evaluates to a True value. Refer to the section titled ‘Boolean Expressions’ for how an
expression evaluates to a Boolean value.

The expression can also be written to obtain a Job attribute, a Sample attribute, or a
Namespace value. If the value obtained is not one of the False values, the error-code will be raised.

RAISE WHEN JOB attribute expression;
RAISE WHEN SAMPLE attribute expression;
RAISE WHEN NAMESPACE path expression;

Attribute and path must be a quoted String literal value or a variable of the TEXT Type. If

expression is included, it must be written such that the value of the Job, Sample, or Namespace part is
the first value of the conditional test. For example, SAMPLE “count” > 0. If an expression is
not provided, then the value of the attribute or Namespace path alone will determine the truth state.

Examples
Examples of the use of the RAISE statement which assume a NUMBER Type variable has been

defined are:

RAISE “type-error”;

RAISE “problem” WHEN x = 0;

RAISE “range-error” WHEN x < 1 or x > 10;

RAISE “sample-error” WHEN SAMPLE “error”;
RAISE “counter zero” WHEN JOB “count” <= 0;

84 - REMARK Automation Scripting Language

JEOL AISDG

REMARK

The REMARK statement is a comment. There is no action performed by this statement. It is
entirely ignored by Automation. All characters that follow the REMARK keyword on the same line
(up to the carriage return or new-line character at the end of the physical line of text) are considered
part of the comment. Because of this, the REMARK statement does not have to be terminated with a
semicolon like the other statements and blocks in the Automation Script.

Use the REMARK statement to document the Script for other users who may wish to read the
Script. Script authors use the REMARK statement to describe parts of the Script that may be unclear.
Provide as much detail as necessary so that other people can understand the intent of the Script.

Example
The following line is an example of the REMARK statement.

REMARK This is just a comment line.

WARNING! It is also possible to “comment out” text in an Automation Script
by preceding the comment text with two consecutive dashes, --. The default
Script header text is commented using this form. The text after and including the
two dashes is discarded by Automation and thus is not preserved when the
Automation Script is re-written to a file. That is, if a user loads an Automation
Script containing text following two dashes, that text will not be written back to
the file when the script is saved again.

Automation Scripting Language REPEAT - 85

AISDG JEOL

REPEAT

 The various forms of the REPEAT block execute a sequence of statements zero or more
times. The number of repetitions is determined by the conditions stipulated by the block and the
current state of Automation at the point of execution. The syntax of the REPEAT block is:

 REPEAT loop-criteria DO
 statement-block
 THEN
 then-statement-block

END REPEAT;

 The REPEAT block syntax provides multiple ways that the statements in the statement-block
can be repeated. The loop-criteria (or its absence) specify how the REPEAT block will repeat the
statements of the statement-block. The following list provides an overview of ways that repetition
can occur. The statements in the statement-block can be repeated:

• until an EXIT statement is encountered or until one of the statements causes a programmatic
error (when the loop-criteria is omitted).

• a specific number of times.
• once for each item in a list (or variable of the LIST Type).
• until a stop condition that is specified in the loop-criteria is met.

The Then Block

Immediately after the successful completion of the statement-block, the statements in the then-
statement-block will execute one time. The then-statement-block will only execute if all of the
following conditions are satisfied: each of the statements of the statement-block must be executed at
least once, the loop did not stop early by encountering an EXIT statement, and no error condition was
raised during the execution of the statement-block that would cause it to be interrupted.

Indefinite Repetition
 To execute a series of statements a unspecified number of times, use the simplest syntax:

 REPEAT
 statement-block
 END REPEAT;

 The statement-block in the above syntax will continue to repeat until either an EXIT, FINISH,
or TERMINATE statement is executed, or a programmatic error occurs.

 WARNING! It is possible to create a loop that never ends (known as an
“infinite loop”) using this statement. An infinite loop is a REPEAT block that
does not stop running because the conditions for termination are never met. It is
very important to always write a provision for ending the REPEAT block and
thus preventing the statements in the statement-block from repeating forever.

 The remaining descriptions will detail the syntax of the first line of the REPEAT block –
specifically how to specify the loop-criteria.

86 - REPEAT Automation Scripting Language

JEOL AISDG

Repeating a Specific Number of Times
 To execute a series of statements a specific number of times, use the syntax:

 REPEAT number TIMES DO…

 The number specified must be a non-negative integer or a variable containing a NUMBER
Type. The fractional component of the numeric value of a variable will be ignored. In the following
example, the statement-block would execute only 5 times.

 VAR x : NUMBER = 5.9;

 REPEAT x TIMES DO…

Repeating a Specific Number of Times with Options

 This form of the REPEAT block is called the “REPEAT TO” form because it repeats the
statements from a specific value to another specific value. The following syntax is used to repeat a
sequence of statements a specific number of times:

 REPEAT loop-counter

FROM from-expression
TO to-expression
STEP step-expression DO…

The number of repetitions could be determined at the time the REPEAT block is executed if

variables are used in any of the expressions following the FROM, TO, and/or STEP keywords. The
actual number of repetitions could potentially be less than the specified number if an EXIT statement
is encountered that would terminate the loop before all of the repetitions take place.

A special variable called a “loop counter” can be specified at the beginning of the loop after
the REPEAT keyword, if necessary. The author of the Automation Script provides the name for this
variable in the place of loop-counter. The loop counter variable is defined to be of the NUMBER Type
and will contain the current iteration value for each repetition of the statement-block.

The from-expression, to-expression, and step-expression are either constant numeric values,
expressions that result in numeric values, or variables of the NUMBER Type.

From-expression sets the initial value of the loop-counter for the first iteration.
To-expression specifies the stopping condition for the REPEAT block. When the value of

loop-counter surpasses the value of to-expression the loop will terminate successfully. Note that the
loop-counter may be counting down if step-expression is negative.

Step-expression specifies the amount of change of the loop-counter value after each repetition
of the statement-block. If from-expression is specified to be 1 (one) and step-expression is specified
to be 2 (two) then the loop-counter variable will hold the values 1, 3, 5, 7, etc. for each repetition.

The from-expression and step-expression both default to the value of 1 (one) when they are
omitted. The TO keyword and to-expression are the only required elements of this syntax. If the
value of from-expression is less than the value of to-expression and the value of step-expression is
negative then the statements in the statement-block will not execute. The converse is similar – the
statement-block will not execute if the value of from-expression is greater than the value of to-
expression and the value of step-expression is positive.

Automation Scripting Language REPEAT - 87

AISDG JEOL

NOTE: Setting the value of step-expression to be 0 (zero) would create a loop that would
never end (known as an “infinite loop”). Therefore, the REPEAT block will execute exactly
once when the value of step-expression is detected to be 0.

Examples

The following loop will repeat 4 times and level will initially contain the value 1 during the
first iteration, then 2 during the second, 3 during the third, and finally 4 during the fourth and last
repetition.

REPEAT level TO 4 DO
 …
END REPEAT;

In the next example, the loop will also repeat 4 times but level will initially contain the value 5
during the first iteration, then 10 during the second, 15 during the third, and finally 20 for the fourth
and last repetition.

REPEAT level FROM 5 TO 20 STEP 5 DO
 …
END REPEAT;

The next example will repeat the statements 3 times and level will initially contain the value 5
during the first iteration, then 3.5 during the second, and 2 during the third and final iteration.

REPEAT level FROM 5 TO 1 STEP –1.5 DO
 …
END REPEAT;

Note that in the example above, the statement-block never executed with the level variable

equal to the actual specified TO value of 1 (one). This is because the fourth iteration would have
subtracted 1.5 from 2 leaving 0.5. Since 0.5 is less than our criteria for stopping, the loop exits.

Repeating Over a List of Values
 Another way to repeat a sequence of statements is with the “REPEAT IN” form. This syntax
is given this name because it repeats the statement-block once for each value that is in a list. Here is
the syntax:

 REPEAT item IN value-list DO…

This syntax instructs Automation to repeat the statement-block one time for each value
contained in the value-list. For example, if the value-list had three values in it, the loop would repeat
three times. Value-list can be a constant LIST Type value or a variable that holds a LIST value.

Like the “REPEAT TO” syntax discussed earlier which has a loop-counter variable that is
available to access during each repetition of the loop, this syntax has an item variable that will hold
the value of each item in the value-list during each iteration. The item variable will contain each
consecutive value in the value-list in sequence. It is important to realize that because it is possible
for the basic LIST Type to contain many distinct values of various Types simultaneously, the Type of

88 - REPEAT Automation Scripting Language

JEOL AISDG

the item variable could potentially have a different Type from one iteration of the loop to the next.
The statement-block will execute the same number of times as there are elements in the value-list.

Examples
An example of this form of the REPEAT block is:

REPEAT n IN {1, 2, 5, 10, 20} DO
 …
END REPEAT;

VAR power2 : LIST = {2, 4, 8, 16};
REPEAT n IN power2 DO
 …
END REPEAT;

WARNING! The Type of the item variable may change from one iteration
to the next if the list variable value-list is not homogeneous, meaning that the
variable contains values of varying Types.

Repeating Conditionally
The “REPEAT WHILE” form of the REPEAT block repeats a sequence of statements while a

condition is True. It has the following syntax:

 REPEAT WHILE expression DO…

The expression of the “REPEAT WHILE” form is evaluated prior to each iteration of the
loop. If the result is True, the loop continues. If the result is False, the loop is finished and if a then-
block is provided, the statements in the then-block will be executed. It is possible for the statement-
block to be skipped entirely if the expression evaluates to False prior to the first iteration. The then-
block will not execute if the loop terminates early by encountering an EXIT statement in the
statement-block.

The “REPEAT UNTIL” form repeats a sequence of statements until a condition becomes
True. It has the following syntax:

REPEAT UNTIL expression DO…

The expression of the “REPEAT UNTIL” form is evaluated after each repetition of the loop.
If the result is False, the loop continues. If the result is True, the loop is finished and if a then-block is
provided, the statements in the then-block will be executed. Since the expression is evaluated after
each iteration, the statements in statement-block will execute at least once. Like the “REPEAT
WHILE” form, the then-block will not execute if the loop terminates early by encountering an EXIT
statement in the statement-block.
 The expression in each of these two forms of the REPEAT statement result in a truth value.
Refer to the section titled ‘Boolean Expressions’ for how an expression will evaluate to a Boolean
value. Optionally, the expression can begin with or be replaced by a Job attribute, a Sample attribute,
or a Namespace value.

Automation Scripting Language REPEAT - 89

AISDG JEOL

REPEAT while-or-until JOB attribute expression DO…
REPEAT while-or-until SAMPLE attribute expression DO…
REPEAT while-or-until NAMESPACE path expression DO…

Attribute and path must be a quoted String literal value or a variable of the TEXT Type. If

expression is included, it must be written such that the value of the Job, Sample, or Namespace part is
the first value of the conditional test. For example, SAMPLE “count” > 0. If an expression is
not provided, then the value of the attribute or Namespace path alone will determine the truth state.
 Please read the warning about how to avoid writing infinite loops in the prior section titled,
“Indefinite Repetition”.

Examples

 Examples of the conditional form of the REPEAT block follow. The examples are based on
the initial condition that the value of the variable x is set to 1 (one) before the loops execute.

VAR x : NUMBER;

The value of the variable x will equal 5 after executing the following example.

SET x = 1;
REPEAT WHILE x <= 5 DO
 -- x will be 1, then 2, 3, 4, 5
 …
 SET x = x + 1;
END REPEAT;

The value of the variable x will not be less than 5 after executing the next example. The value
of x (from the Job attribute “reps”) will not be changed if it is already greater than 5.

SET x = JOB “reps”;
REPEAT WHILE JOB “reps” <= 5 DO
 …
 SET x = x + 1;
 SET JOB “reps” = x;
END REPEAT;

 The value of the variable x will equal 0 after executing this last loop.

SET x = 5;
REPEAT UNTIL x = 0 DO
 -- x will be 5, then 4, 3, 2, 1
 …
 SET x = x – 1;
END REPEAT;

90 - RETAIN Automation Scripting Language

JEOL AISDG

RETAIN

The RETAIN statement informs Automation that a file should not be deleted when the
variable holding the file goes out of scope. The syntax of the RETAIN statement is simply:

 RETAIN file-variable SAVE AS string-or-variable;

 The file-variable is an identifier of the DATA Type (or LIST Type if the variable is indexed)
that indicates which file is to be preserved. This statement becomes necessary when data files are
generated and are the result of executing Percival code using the CALL statement. Other potential
uses include preserving generated plot files (from the PRINT and PRESENTATION statements that
omit their own SAVE AS clause).
 The SAVE AS clause is optional and, when provided, specifies the name with which the file
is to be preserved. When the SAVE AS clause is omitted, the name of the file-variable is used for the
name of the file.

Examples
 The following are examples of the use of the RETAIN statement.

RETAIN myFile;

RETAIN myFile SAVE AS “option1”;

Automation Scripting Language RETRY - 91

AISDG JEOL

RETRY

The RETRY statement informs Automation that the next statement to be run after the RETRY
statement completes will be the same statement that raised the error condition. The RETRY
statement can only be used within an error handler. See the prior description of the ON ERROR
statement. The syntax of the RETRY statement is simply:

 RETRY WHEN expression;

After an error handler completes without the RETRY statement, execution of the Automation
Script normally resumes with the statement that follows the one that raised the error condition. The
RETRY statement changes this behavior by causing the statement that raised the error to be executed
again unless the statement that raised the error is a RAISE statement.

The When Clause
If the WHEN clause is specified, this statement only influences the execution path if the

expression evaluates to a True value. Refer to the section titled ‘Boolean Expressions’ for how an
expression evaluates to a Boolean value.

The expression can also be written to obtain a Job attribute, a Sample attribute, or a
Namespace value. If the value obtained is not one of the False values, the block will exit.

RETRY WHEN JOB attribute expression;
RETRY WHEN SAMPLE attribute expression;
RETRY WHEN NAMESPACE path expression;

Attribute and path must be a quoted String literal value or a variable of the TEXT Type. If

expression is included, it must be written such that the value of the Job, Sample, or Namespace part is
the first value of the conditional test. For example, SAMPLE “count” > 0. If an expression is
not provided, then the value of the attribute or Namespace path alone will determine the truth state.

IMPORTANT: It is crucial to remember that if the RETRY statement is included in an
error handler, it is essential that the other statements in the same error handler change the
programmatic conditions sufficiently such that the same statement that originally caused the
error will not raise the same error condition again. Care must be taken to avoid infinite retry
attempts.

92 - RETRY Automation Scripting Language

JEOL AISDG

Examples

 The following are examples of the use of the RETRY statement.

NUMBER Small IS 1 TO 99;

VAR n : Small = 10;
VAR tries : NUMBER = 5;

ON ERROR ALL DO
 INFORM “Oops!”;
 SET tries = tries – 1;
 RETRY WHEN tries > 0;
END ERROR;

ON ERROR “range-error” DO
 SET n = 1;
 RETRY;
END ERROR;

…

SET n = n * 10;

Automation Scripting Language SET - 93

AISDG JEOL

SET

 The SET statement most commonly assigns a value to a variable. It can also be used to set a
value to a machine or experiment parameter, to a Namespace entity, or to an attribute of the Job or
current Sample. A SET statement begins with the keyword SET and is immediately followed by an
optional keyword that specifies where the value is to be stored. This is then followed one or more
assignments which identify the entity or entities for which the value(s) will be associated and
provides the new value(s). The syntax of the SET statement is as follows:

 SET mode assignment-expression;

When assigning a value to a variable, the variable must have been previously defined with a
VAR statement. Refer to the description of the VAR statement. Assignments can also be made to a
Method parameter that is designated with one of the OUT or INOUT keywords. Refer to the
description of Method parameters in the prior discussion of the METHOD block.

Setting the Destination of the Assignment
When SET is used outside of an EXPERIMENT block, mode can be one of the keywords VAR,

MACHINE, NAMESPACE, JOB, or SAMPLE. If a mode is not specified, the statement assumes that
you are setting the value of a variable and uses the VAR mode.

When SET is used within an EXPERIMENT block, mode can be optionally specified with the
PARAMETER keyword. There is no other choice except to set Experimental parameters when using
the SET statement within an EXPERIMENT block.

Either of the keywords PARAMETER or the plural PARAMETERS may follow the
MACHINE keyword for readability.

Assignment Expressions
 There may be one or more assignment-expression in the SET statement and each must be
terminated by a semicolon. More than one assignment-expression in a SET statement is referred to as
an “assignment block” (see below). An assignment-expression has the following form:

 name = new-value;

Depending on mode, name specifies where the new-value will be set. The following table
describes the possibilities.

When mode is… name is…

VAR
(or omitted outside an EXPERIMENT block)

An identifier that names a previously defined variable or
Method parameter specified to be OUT or INOUT.

PARAMETERS
(or omitted within an EXPERIMENT block)

An identifier that names a parameter of an experiment that
will be set in the pulse program prior data acquisition.

MACHINE PARAMETERS A String or variable that identifies an established NMR

instrument Namespace parameter that exists within the
parameter.jnd file.

94 - SET Automation Scripting Language

JEOL AISDG

When mode is… name is…

NAMESPACE

A String or variable name that identifies a path into the
Namespace parameter database. Setting the default value
to NULL will remove the Namespace parameter.

JOB A String or variable name that identifies an attribute of the
Job Group.

SAMPLE

A String or variable name that identifies an attribute of the
current Sample. There are four keywords (SAVE,
INTERIM, CONCEAL, and CONST) that affect how the
Sample attributes are stored when using the SAMPLE
mode. Either SAVE or INTERIM can be specified since
those two keywords are mutually exclusive.
• Use the SAVE keyword to cause the attribute value to

be stored permanently in the Sample Database. It is
recommended that this keyword be used to store
information that is learned about the sample from
experimentation and processing.

• Use the INTERIM keyword to cause the attribute value
to be stored temporarily in the Sample Database. This
attribute will be removed when the Sample is ejected
from the instrument. It is recommended that this
keyword be used to set attributes that affect behaviors
that need to persist from Job to Job, but must be reset
when the operator is finished with the Sample.

• Use the CONCEAL keyword to prevent this Sample
attribute from appearing on the User Interface.
Specifying CONCEAL implicitly includes the SAVE
behavior.

• Use the CONST keyword if the attribute is to be
immutable – that is, the user must not be able to modify
the attribute value. Specifying CONST implicitly
includes the SAVE behavior.

Assignment Blocks
 Although is it possible for the author of the Script to write each variable assignment with its
own SET statement, it is often preferable (especially when mode is set to JOB or SAMPLE) to assign
as many values as possible with a single assignment block. The reason for using an assignment block
is that all the values that will affect the instrument state will be applied together at the end of the
assignment block. This allows the parameters to obey the semantic order for applying their new
values to the instrument. The semantic rules for parameter order cannot be enforced when individual
SET statements are used to assign each variable.

Automation Scripting Language SET - 95

AISDG JEOL

Providing the New-Value
The new-value in the assignment-expression can be specified in one of the following ways:

constant
JOB job-attribute ELSE constant
SAMPLE sample-attribute ELSE constant
NAMESPACE namespace-path ELSE constant
EVALUATE (expression) ELSE constant
PROCESS data-variable WITH processing-list

Variables of the DATA Type cannot use the JOB, SAMPLE, NAMESPACE, or EVALUATE

clauses shown above to set their value. Only a constant String or an expression that results in a TEXT
Type is a legal new value for a DATA Type variable.

Constant is a value that has a Type that is appropriate for the variable that is being assigned.
Job-attribute is a String or variable of the TEXT Type that represents the attribute of interest

on the running job.
Sample-attribute is a String or variable of the TEXT Type that represents the attribute of

interest on the current sample.
Namespace-path is a String or variable of the TEXT Type representing a Namespace path to a

stored value in the Namespace parameter database.
Expression is a Percival code expression that will be evaluated.
More than one Job, Sample, Namespace, or Evaluate clause may be specified when they are

separated by an ELSE keyword before the optional final ELSE clause.
The optional ELSE clause specifies a specific default value for the case when the job-

attribute, sample-attribute, or namespace-path cannot be found or when those values or the
evaluation expression cannot be resolved to an appropriate value of the required Type. If the ELSE
clause is omitted, an error condition could be raised if the new value does not conform to the
requirements of the variable being assigned.

Casting a Value to the Proper Type
 When assigning values to variables, the author must make sure that the Type of the variable
used to store the new value is compatible with the actual type of the new value. In some situations,
we may not know the Type of the value being assigned because it comes from an external source.
Sample attributes are a good example of this because Type rules are not enforced on them. If a
Sample attribute is intended to be a TEXT Type but the value looks like a number, it will be stored as
a NUMBER Type in the Sample. This means that we should cast the value from the Sample to the
Type that we want it to be. We do this explicitly by adding the keyword CAST immediately after the
equal sign of the assignment. The CAST keyword will try to convert the new value to the Type of the
variable that is being used to hold the new value.
 Casting a value to a Type is only permitted when assigning from a variable to another variable
because it is the Type of the variable that determines what the casting process will do. Casting a
constant value is not permitted because the value is known and so it can be written in the proper form.
 See the section titled “Value Type Casting” to learn how values can be interpreted.

Obtaining a Value by Calling a Percival Program or Service
 In addition to the previously described ways to provide a new-value for a variable, the author
of the Script can also call a Percival program or call a service:

96 - SET Automation Scripting Language

JEOL AISDG

CALL percival-program(parameters)
CALL SERVICE “provider::operation”(parameters)

The result of the CALL operation should return a value. As usual, the Type of the variable to

which the result of the CALL will be assigned must be the appropriate Type. If a value is not
explicitly returned by the Percival program or service, the Boolean value TRUE will be assigned to
the variable.

Some Percival programs and some services return Status Codes as a resulting value. Status
Codes are translated into Boolean values for Automation. The Success and Complete Status Code is
translated into a TRUE value and all other Status Codes are translated into a FALSE value.

Refer to the prior explanations of the CALL statement for more details.

Wildcards (*) – Setting more than one value simultaneously
The author may use a name-value pair LIST Type variable (called an association) to assign

values to multiple variables and/or parameters. An association has the following form:

{{name1, value1}, {name2, value2}, … {namen, valuen}}

The new-value can also be set from Namespace if the namespace-path provided results in a
Namespace association value. In this form of assignment, the name must be specified with an
asterisk (*). When mode is set to NAMESPACE, no special action is taken.

When using wildcard assignment within an Experiment block, an acquisition parameter will
be created if the namen does not exist. Outside of an Experiment block, any namen that is not
recognized to be a pre-declared Automation variable will be ignored.

Assigning values into LIST Type variables
 The author can assign a value into a LIST Type variable by specifying the position of the List
element as an integer number after the variable within parenthesis.

lst(position) = new-value;

 To modify the value of an item in the list, specify position to be a number between 1 and the
length of the list. To add a number to the front of the list, specify position to be 0 (zero). To add a
number to the end of the list, specify position to be a number greater than the length of the list.

A special LIST sub-Type called an Association is a bit different. Numerical positions are not
used to specify the element to modify like a typical LIST Type, but rather, the element to change is
specified by name. To assign a value to an element of an association List, specify the name of the
element as a String after the variable within parenthesis.

lst(name) = new-value;

 To modify an existing value in the Association, specify name to be the name of the item to
change. To add a value to the Association, specify name to be a new name that is not currently in the
Association. To remove a value from the Association specify name to be the name of the item to
remove and also specify new-value to be NULL.

Automation Scripting Language SET - 97

AISDG JEOL

Removing a Sample Attribute
 Sample attributes can be removed by assigning them the NULL value. A special syntax is
also provided for this by specifying the keyword REMOVE after SAMPLE then followed by one or
more Sample attribute Strings separated by the keyword AND or commas.

SET SAMPLE REMOVE “my_attribute”;
SET SAMPLE REMOVE “attr1” AND “attr2”;

Examples

 Examples of the use of the SET statement follow. These examples assume that all the
referenced variables are defined. The following statement will set the value 5 to the variable x if x is
of the NUMBER Type. Otherwise, it will raise an error condition if 5 is not a valid value for the Type
of x.

SET VAR x = 5;

 The following statement assigns values to multiple variables.

SET
 s = SAMPLE “id”;
 b = TRUE;

 The following statement sets the variable x to be the value of the Namespace path. If the
Namespace value is not an appropriate value for x, then the value 25 will be assigned to x.

SET x = NAMESPACE “my_preference” ELSE 25;

The following statement sets the variable x to the value that is twice the value of n or it will
raise an error condition if n is not of the NUMBER Type or if the product is not a valid value for the
variable x.

SET x = n * 2;

 The following statement sets the value of an instrument parameter.

SET MACHINE “spin_state” = “SPIN ON”;

Assuming a variable named param exists and it is defined to hold a TEXT Type value and
that value is the name of a machine parameter and further that another variable named value exists
that contains the new value for the parameter, the author can write:

SET MACHINE PARAMETER param = value;

 The following statements set values to the Job scope and Sample scope respectively.

SET JOB “discovered” = TRUE;
SET SAMPLE “peak_at” = 28.1449[Hz];

98 - SET Automation Scripting Language

JEOL AISDG

 The following statements set or create attributes on the current sample. However, specifying
one or more of the special keywords after SAMPLE indicates that this action will store the attribute
into the Sample database.

SET SAMPLE INTERIM “tint” = “blue”;
SET SAMPLE SAVE CONST “mode” = 43.5; -- SAVE is not required here but allowed
SET SAMPLE CONCEAL “secret” = TRUE;

 The following statement sets (or creates) a Namespace path to hold a parameter of a data file.
This example also illustrates the ability to specify the Namespace path using a substitution identifier
as specified within the String surrounded with parenthesis and preceded with the dollar symbol, $.
See the Table of Substitution Identifiers for a list of words that can be used. In this example, the
username of the person who is running this script will be inserted into the path. If the name of the
user is “NMRguy”, the Namespace path will be “AUTOMATION.NMRguy.x_sweep”.

SET NAMESPACE “AUTOMATION.$(user).x_sweep” = dat(“x_sweep_clipped”);

 The following statement assigns the result of an expression to the variable area.

SET area = EVALUATE (pi * radius**2);

The following statement assigns d the data that results from processing e with the processing
list named “1dh”. d and e are previously defined variables of the DATA Type.

SET d = PROCESS e WITH “1dh”;

The following examples assign the result of the Percival program my_op and the service call

to the variables p and s respectively. p and s must be defined to be the same Type that the Percival
program and the service returns.

SET p = CALL my_op(5);
SET s = CALL SERVICE “provider::service”(TRUE);

The following EXPERIMENT block sets the values of a few experimental parameters prior to
acquiring data.

EXPERIMENT
 …
 SET PARAMETERS
 scans = 16;
 x_points = 2**n;
END EXPERIMENT;

The following statements show assigning to Lists and Associations. Each statement example

operates on the value as set by the following VAR statements.

LIST Assoc IS ASSOCIATION;

Automation Scripting Language SET - 99

AISDG JEOL

VAR c : LIST = {“red”, ”green”, ”blue”};
VAR a : Assoc = {{“one”,1}, {“two”,2}};

SET c(1) = 1; --c changed to {1, “green”, “blue”}
SET c(0) = 1; --c changed to {1, “red”, ”green”, ”blue”}
SET c(4) = 1; --c changed to {“red”, ”green”, ”blue”, 1}

SET a(“one”) = “first”; --a changed to {{“one”,”first”}, {“two”,2}}
SET a(“new”) = 3; --a changed to {{“one”,1}, {“two”,2}, {“new”,3}}
SET a(“two”) = NULL; --a changed to {{“one”,1}}

The following statements show how it is possible to set multiple values based on an

association List. An association List is effectively a List of zero or more sub-Lists where each sub-
List contains two elements the first of which must be of the TEXT Type.

LIST Assoc IS ASSOCIATION;

VAR my_values : Assoc = NAMESPACE “samples.initialize” ELSE {};

SET * = my_values;

SET SAMPLE * = NAMESPACE “samples.initialize”;

SET NAMESPACE * = my_values;

Each value of the keys of the association will be assigned to the variable of the same name

using the first syntax, a Sample attribute with the same name using the second syntax, or a
Namespace path using the third syntax. In the case of Sample attributes and Namespace paths, if the
attribute or path does not exist, a new one will be created.

The three examples above may be used outside of an EXPERIMENT block, but only the first
of these examples may be used within an EXPERIMENT block.

 It is therefore possible to obtain the new value for a variable by using a variety of techniques
and there are many possibilities for where the new value can be set.

WARNING! An attempt to assign a new value to a variable that is not of a
compatible Type will raise the error condition “type-error”. Similarly, an attempt
to assign a value that is out of range of a constrained sub-Type will raise the error
condition “constraint-error”. If there are no error-handling blocks to handle these
errors when they occur, the Method will terminate immediately with the error
status that was raised. Refer to the prior discussion of the ON ERROR statement.

100 - TERMINATE Automation Scripting Language

JEOL AISDG

TERMINATE

The TERMINATE statement immediately stops the execution of the Method. Any statements
following this statement will not be executed. The TERMINATE statement has the following syntax:

TERMINATE WITH STATUS message WHEN expression;

 Any file(s) that had been created (acquired data, processed files, and printed files) by the
Method up to this statement will be deleted. The previously described FINISH statement has a
similar function but will preserve the files generated by the Method.

The Status Message
 An optional reason can be provided when a Script is going to be terminated. The specified
message should be a short explanation for why the script is being terminated prematurely. When the
Script completes, the message can be displayed on the user interface and it will be logged. Message
can be a quoted String literal, a variable of the TEXT Type, or translation identifier. The WITH
keyword is optional and can be provided to enhance readability.

The When Clause
If the WHEN clause is specified, this statement only has an effect if the expression evaluates

to a True value. Refer to the section titled ‘Boolean Expressions’ for how an expression evaluates to
a Boolean value.

The expression can also be written to obtain a Job attribute, a Sample attribute, or a
Namespace value. If the value obtained is not one of the False values, the Method will terminate.

TERMINATE WHEN JOB attribute expression;
TERMINATE WHEN SAMPLE attribute expression;
TERMINATE WHEN NAMESPACE path expression;

Attribute and path must be a quoted String literal value or a variable of the TEXT Type. If

expression is included, it must be written such that the value of the Job, Sample, or Namespace part is
the first value of the conditional test. For example, SAMPLE “count” > 0. If an expression is
not provided, then the value of the attribute or Namespace path alone will determine the truth state.

Examples
 The following two examples of the TERMINATE statement produce the same result and both
assume that a variable named err has been previously defined and set appropriately.

VAR err : BOOLEAN = FALSE;

 The simplest form contains the TERMINATE keyword itself.

IF err THEN
 TERMINATE;
END IF;

Automation Scripting Language TERMINATE - 101

AISDG JEOL

 The following does the same as the example above but also provides a reason.

IF err THEN
 TERMINATE WITH STATUS “No data acquired!”;
END IF;

The following line has the same effect as the IF block in the previous example.

TERMINATE WITH STATUS “No data acquired!” WHEN err;

 The following line terminates the Method if the Sample has an “error” attribute that evaluates
to a True value.

TERMINATE WHEN SAMPLE “error”;

102 - TRANSLATE Automation Scripting Language

JEOL AISDG

TRANSLATE

The purpose of the TRANSLATE statement is to provide language translations for the text
elements of Automation Script statements that will be readable by users on the user interface. The
syntax of the TRANSLATE statement is:

 TRANSLATE name language-code string-list;

The name following the TRANSLATE keyword is a unique identifier within the Script. It
will be used in the place of String elements of the Automation Script syntax to indicate the necessary
translation based on the locale of the user.

The string-list is a series of comma-separated Strings. This text should be written in the
language designated by the language-code.

Language Codes
The language-code is the standardized code consisting of two or three letters that represents

the language in which the following text translation is written. The standard language codes can be
found on the Internet at the Library of Congress (the definitive resource):

http://www.loc.gov/standards/iso639-2/php/English_list.php

Default Language Translations
If language-code is omitted, or if it is specified as ALL, the text becomes the default

translation. The default translation will be used when a specific translation (as specified by the user’s
locale preference) is not available. If a default translation is not specified and an English translation
is provided, English will become the default translation. Otherwise, the first translation provided will
be used as the default if there is no English translation and no designated default.

Examples
The author of the Script can use separate TRANSLATE statements for each language or the

different languages may be combined for the same name identifier. The examples below show both
of these forms. The author apologizes for any bad translations – blame “Babel Fish”.

TRANSLATE Proton_Help EN “Acquire Proton data”;

TRANSLATE Proton_Help ES “Adquiera los datos del protón”;

TRANSLATE Proton_Help ALL “Proton acquisition”;
 ES “Adquiera los datos del protón”;
 ITA “Acquisti i dati del protone”;
 FR “Acquérez les données de proton”;

TRANSLATE paper_print EN “Print result on paper?”,
 “Output will go to default when TRUE.”;
 ES “¿Resultado de la impresión en el papel?”,
 “La salida irá a omitir cuando es VERDAD.”;

Automation Scripting Language TRANSLATE - 103

AISDG JEOL

Common Language Codes

Language Code Language Code
Chinese ZH, CHI, ZHO Italian IT, ITA

English EN, ENG Japanese JA, JPN

French FR, FRE, FRA Russian RU, RUS

German DE, GER, DEU Spanish ES, SPA

Greek EL, GRE, ELL Swedish SV, SWE

104 - TUNE Automation Scripting Language

JEOL AISDG

TUNE

 The TUNE statement attempts to tune a specific aspect of the spectrometer. At this time, only
the Probe may be tuned. The syntax of the TUNE statement is:

 TUNE PROBE FORCE Boolean-or-variable DUAL Boolean-or-variable
 COIL string-or-variable
 DOMAIN string-or-variable
 OFFSET number-or-variable;

The string-or-variable following the COIL keyword specifies the coil to be tuned. Possible
values for the COIL are: “LOCK”, “HF1”, “HF2”, “LF1”, “LF2”, “FGX”. There may be more or
fewer of available COIL values depending on the configuration of the NMR instrument.

The string-or-variable following the DOMAIN keyword specifies the nucleus to be tuned.
Examples of values for DOMAIN are: “Proton”, “Deuterium”, “Fluorine19”. The value of the COIL
that is set determines the set of valid options for the DOMAIN.

The Probe Tool can assist in discovering the available COIL and DOMAIN values for your
instrument. Choosing “Probe Tool” from the “Config” menu in the Spectrometer Control window
will open it.

The number-or-variable following the OFFSET is a number with a unit specifying the offset
at which the tune should be accomplished.

The FORCE keyword will ensure that the probe is tuned again even when the system thinks
that it is already tuned. If the keyword is omitted, then the TUNE statement will be skipped if the
probe has already been tuned. If the optional Boolean-or-variable following FORCE is omitted then
the force state is True. If not specified, then the force state will be set to the value provided.

The DUAL keyword will allow dual-tune probes to be tuned to multiple domains. If the
keyword is omitted, then the TUNE statement will only TUNE to a single domain. Similarly, the
Boolean-or-variable can be provided to set the state of the dual mode.

The author can specify any number of COIL / DOMAIN / OFFSET triplets (up to the physical
limit of the instrument) so long as all three keywords are used the same number of times.

Examples
 Examples of the use of the TUNE statement follow:

TUNE PROBE COIL “LF1” DOMAIN “Carbon13” OFFSET 2.5[ppm];

VAR c : TEXT;
VAR d : TEXT;
EXPOSE VAR toffset : NUMBER = 0[Hz], HELP “Tuning offset”;
EXPOSE VAR always : BOOLEAN = FALSE, HELP “Force tune?”;
…
REMARK - Set the values of c and d here.

TUNE PROBE FORCE always COIL c DOMAIN d OFFSET toffset;

TUNE PROBE
 COIL “LF1” DOMAIN “Carbon13” OFFSET 2.5[ppm]
 COIL c DOMAIN d OFFSET 100[Hz];

Automation Scripting Language VAR - 105

AISDG JEOL

VAR

A variable is a named value like a constant except that its value is mutable (it can be modified
during the execution of the Automation Script). Refer to the prior descriptions of the CONST and
SET statements. A variable must be defined before it can be referenced and it can optionally have its
value set to a specific initial value at the time it is created. The VAR statement may have one of the
following syntax forms:

VAR var-name : value-type = default-value;

EXPOSE mode VAR var-name : value-type = default-value

WHEN (Boolean-expression) , var-options , HELP help-text;

The var-name is an identifier that uniquely names the variable. More than one variable,
constant, or Method parameter with the same name cannot exist in the same scope level. A variable,
constant or Method parameter with the same name at an outer scope level will be hidden (or eclipsed)
by the new variable.

Value-type may be any of the five basic Types defined in the Automation grammar
(BOOLEAN, NUMBER, TEXT, LIST, or DATA) or it may be a sub-Type defined prior to the VAR
statement using the ENUM, NUMBER, or LIST statements.

The default-value can be specified in one of the following ways:

constant
JOB job-attribute ELSE constant
SAMPLE sample-attribute ELSE constant
NAMESPACE namespace-path ELSE constant
EVALUATE (expression) ELSE constant

 Variables of the DATA Type cannot use the JOB, SAMPLE, NAMESPACE, or EVALUATE
clauses shown above to set the initial value. Only a constant String or an expression that results in a
TEXT Type value is a legal form for initializing a DATA Type variable. More than one Job, Sample,
Namespace, or Evaluate clause may be specified when they are separated by an ELSE keyword
before the optional final ELSE clause.

WARNING! The use of an expression to initialize a variable could potentially
raise a Type-Error exception at run-time if the evaluation of the expression does
not result in a value of the correct Type.

Description

Constant is a value that is of the Type value-type. It must be of the same Type as the variable
being defined. If constant is not appropriate for value-type, the error condition “type-error” will be
raised when the statement attempts to set the initial value of the variable.

Job-attribute is a String or variable representing the attribute of interest of the currently
running Job. Sample-attribute is a String or variable representing the attribute of interest of the
current Sample. Namespace-path is a String or variable representing the location of a value in the
Namespace Parameter Database. Expression is a Percival code expression that will be evaluated.

106 - VAR Automation Scripting Language

JEOL AISDG

The optional ELSE clause provides a specific default value for the cases when the job-
attribute, sample-attribute, or namespace-path cannot be found or when those values or the
evaluation expression cannot be resolved to an appropriate value of the required Type. If the ELSE
clause is omitted or if the constant value is not valid for the Type of the variable, an error condition
(normally “type-error”) will be raised.

Changing the Value of a Variable

The SET statement is used to modify a variable’s value. Refer to the prior description of the
SET statement to learn how to change the value of a variable that is already defined.

Casting the Initial Value to the Proper Type

 The author must make sure that if a default value is provided, it is of the proper Type of the
variable being defined. In some situations, we may not know the Type of the value being used as the
initial value because it comes from an external source. Sample attributes are a good example of this
because Type rules are not enforced on them. If a Sample attribute is intended to be a TEXT Type but
the value looks like a number, it will be stored as a NUMBER Type in the Sample. This means that we
should cast the value from the Sample to the Type that we want it to be. We do this explicitly by
adding the keyword CAST immediately after the equal sign of the assignment. The CAST keyword
will try to convert the new value to the Type of the variable that is being used to hold the new value.
 Casting a value to a Type is only permitted when the initial value comes from another variable
or from a JOB, SAMPLE, or NAMESPACE clause. Casting a constant value is not permitted
because the value is known and so it can be written in the proper form.
 See the section titled “Value Type Casting” to learn how values can be interpreted.

Exposed Variables
The EXPOSE keyword causes the variable’s name and value to appear in the Method

attributes area of the Job page on the Spectrometer Control window. The description provided by the
help clause will also be displayed with the variable. Exposing a variable gives the operator the ability
to override the default initial value specified by the variable declaration.

When the value of an exposed variable is changed, it may have an impact on the run-time
duration of the Method and so the duration time will be re-computed. If it is known that an exposed
variable will not have an impact on the duration then the variable can be defined as a ‘passive’ mode
variable by inserting the PASSIVE keyword before the VAR keyword. This will cause the time
calculation to be skipped for this variable and it will also make the interface more responsive. By
default, without the PASSIVE keyword specified, exposed variables are defined with a mode set to
‘active’. However, the author of the script may choose to add the ACTIVE keyword before the VAR
keyword even though it is neither required nor necessary.

The When Clause

The WHEN clause may only be specified if the EXPOSE keyword is used. The variable will
only be visible in the Method attributes area when the expression evaluates to a True value. The
expression is evaluated each time a Method parameter or other exposed variable/constant is modified.

Variable Options: Dependencies
 A dependency clause may only be specified if the EXPOSE keyword is used and it stipulates
how the initial value of a variable should be affected when other values upon which it depends are
changed. In these circumstances, the author of the Automation Script can designate the relationship
between the variable and the other variables and/or parameters using the DEPENDS clause.

Automation Scripting Language VAR - 107

AISDG JEOL

 This form of the dependency clause is:

 DEPENDS ON parameter-or-variable-list
 EVALUATE (expression) ELSE constant

 The parameter-or-variable-list is one or more identifiers separated by commas. If a variable or
parameter is listed in the parameter-or-variable-list it should naturally be part of the expression or
Boolean-expression.
 A variable that includes a DEPENDS clause of this form will have its initial value
recalculated on the user interface whenever a variable or parameter on which it depends is modified.
The expression is a Percival expression that will be evaluated to determine the new initial value of the
variable. The constant in the optional ELSE clause will be the initial value if the expression does not
result in a legal value for the variable.

Parameter Options: Relevancy
 A variable is normally always relevant to the Method in which it is declared, but there may be
times when that is not True – for example, a variable only referenced within parts of an IF statement.
A variable definition that includes an ENABLE clause is said to be irrelevant to the Method when the
result of the evaluation of its associated Boolean-expression is False. Include the ENABLE clause
after a dependency clause when the relevancy of the variable depends on the value of one or more
other variables or parameters. Therefore, the Boolean-expression should likely contain the names of
the other variable(s) and/or parameter(s) on which it depends. An irrelevant variable will appear
disabled so that the operator will be unable set or change its value in the Method attributes area on the
Job tab of the Spectrometer Control window.

 DEPENDS ON parameter-or-variable-list
 ENABLE WHEN (Boolean-expression)

 The DEPENDS clause at the beginning is only required when the relevancy of a parameter
depends on the value of another parameter. If the relevancy of a parameter depended on the time of
day, for example, the DEPENDS clause can be omitted. Assuming there exists a function,
time_of_day, that returned the fractional number of hours since the previous midnight, the author
could simply write the following to create a parameter that is enabled after noon.

 ENABLE WHEN (time_of_day > 12)

 The examples provided in the Parameter Options: Relevancy section in the description of the
METHOD statement can be modified to use exposed variables rather than Method parameters and are
similar examples for exposed variables.

NOTE: The ENABLE clause cannot be specified on its own if it had been previously
specified at the end of the DEPENDS clause.

 The two forms of the dependency clause described above can be combined together to make a
third form which specifies a value dependency as well as a rule for when the variable is relevant to
the Method.

108 - VAR Automation Scripting Language

JEOL AISDG

 DEPENDS ON parameter-or-variable-list
 EVALUATE (expression) ELSE constant,
 ENABLE WHEN (Boolean-expression)

Help for the User
A description may be attached to an exposed variable (those definitions beginning with the

EXPOSE keyword) by inserting a comma, the HELP keyword, and one or more Strings (separated by
commas) at the end of the variable declaration. The HELP clause is not required2, but its inclusion is
strongly encouraged so that users may better understand the purpose of the variable. The text of the
help will be displayed with the variable Method attributes area of the Job page on the Spectrometer
Control window.

The help text can be replaced by a previously defined language translation identifier to allow
the help text to be determined by the current locale. See the TRANSLATE statement for information
about creating and using translatable text.

Examples

 Below are some examples of the use of the VAR statement. The following statements create
basic variables. The colons following the variable names of adjacent VAR statements are often
aligned to improve readability.

VAR x : NUMBER;

VAR running : BOOLEAN;

 Create a variable named min_sweep for the minimum sweep width with an initial value of
2[ppm]. This variable will be visible and changeable on the Automation user interface.

EXPOSE VAR min_sweep : NUMBER = 2[ppm],
 HELP “The minimum sweep width for”,
 “all experiments in this Method”;

The next statement gets the “mode” attribute from the running Job and stores it in the variable
job_mode. job_mode will be set to “None” if the Job attribute is not found or is not a String
value.

VAR job_mode : TEXT = JOB “mode” ELSE “None”;

The next statement gets the “notebook” attribute from the current sample and stores it in the
variable nbook. This statement will raise an error condition if the value of the specified sample
attribute is not a String value.

VAR nbook : TEXT = SAMPLE “notebook”;

2 The HELP clause is required when the parser instruction #REQUIRE help = True is specified
previously in the Automation Script file.

Automation Scripting Language VAR - 109

AISDG JEOL

The next statement gets the user value “x_sweep” from Namespace and stores it in the
variable s. s will be set to 0[Hz] if the Namespace path is not found or if the value is not a
NUMBER Type.

VAR s : NUMBER = NAMESPACE “AUTOMATION.$(user).x_sweep” ELSE 0[Hz];

The next statement creates a variable with an initial evaluated value.

VAR y : NUMBER = EVALUATE (x**2 – 4*x + 3) ELSE 0;

 The next two statements create a Boolean variable, debug, with an initial value of FALSE
and a dependent variable, log_msg, to log debugging messages when the debug variable is set to
be True.

VAR debug : BOOLEAN = FALSE;

VAR log_msg : BOOLEAN = FALSE WHEN debug = TRUE;

The following examples show the use of a user defined Type and a dependency on the

nucleus.

ENUM Nuclei IS (“1H”, “2H”, “13C”);

EXPOSE VAR nucleus : Nuclei = “1H”;

EXPOSE VAR sweep : NUMBER,

DEPENDS ON nucleus
EVALUATE ((nucleus = “13C”) ? 4.5[ppm] : 2[ppm]);

110 - VISUALIZE Automation Scripting Language

JEOL AISDG

VISUALIZE

The VIZUALIZE statement is used to return one or more data files to the workstation and the
screen of the user executing the Method. It has the following syntax:

VISUALIZE data-file-variable-list IN “Percival-tool-name”;

Description
 The data-file-variable-list specifies the content that will be sent to the user’s workstation.
Each variable name used in this statement must have been declared to be of the DATA Type. File
variables can be created in any of the following ways: by an EXPERIMENT block, by declaring
them with the VAR or CONST statement to be of the DATA Type, or by declaring them as DATA
Type parameters of the enclosing Method.

More than one file variable can be specified and this can allow for some helpful arrangements
of the data. When two or more variables are used, each variable must be separated by the keyword
AND or the keyword WITH depending on the desired arrangement which is discussed later.
 Each data file will appear on the screen of the user who requested the Method to run. The
only caveat is that the same user must have an active connection to the spectrometer at the time that
the VISUALIZE statement is executed by the running job for the data to be successfully sent to the
user. This provides for the user to be able to submit a Method from machine A and see his data on the
screen of machine B when his job runs at a later time. If the user cannot be found with a connection
to the NMR instrument, this statement is skipped.

Data Persistence
 Only DATA Type variables that hold files that will persist beyond the scope of the Method can
be used with the VISUALIZE statement. These variables are considered to be non-transitory.
Typically, non-transitory DATA Type variables can be created in the following ways:

• A variable created with the title of an EXPERIMENT block holding acquired data,
• A variable created by a PROCESS statement that includes the SAVE AS clause,
• A variable preserved using the RETAIN statement, and
• All forms of Method parameters.

Note that a non-transitory variable can become transitory (thus unable to be visualized) if the variable
is used as the destination of a SET assignment statement using another transitory source.
 This statement may be used any number of times to conditionally send data to the user’s
workstation and to additionally place the data on the user’s screen.

NOTE: This statement is skipped when the data cannot be displayed on the user’s screen.
To locate the data, use the File Browser to navigate to the Data Server of the instrument that
acquired the data.

Configuration Options

 There are two configuration options that affect the behavior of this statement. Firstly, the
“visualize” Job parameter must not be set to FALSE. This parameter is the controlling gate of
whether the VISUALIZE statement executes – regardless of whether the user is connected to the
instrument. Secondly, after the data is uploaded to the workstation, the “Spectrometer Control: Open
Delivered Data” preference will control if the data is to be put on the user’s screen.

Automation Scripting Language VISUALIZE - 111

AISDG JEOL

Destination Tool Window
 By default, data will be shown in a 1D or nD Processor window ready for the user to work
and analyze the spectrum. PDF files will be displayed by the default PDF viewer program as set in
the operating system settings of the workstation. Although PDF files will always be handled by the
operating system, the Delta software can be instructed how to handle the incoming NMR data files.
In a custom workflow, another tool could be used (or created).

The name of the destination Percival tool to display the data can be specified within quotes
after the IN keyword. The only requirement being that the first parameter of the Percival program
must be a type that can accept a FILE (to display singular data), a SET of files (to display more than
one data, typically side-by-side), a SET of sub-sets of files (to display multiple data, typically
overlaid), or permit any of the formats. The format required is agreed upon between the interface of
the Percival program and the construction of the VISUALIZE statement described in the next section.

Multiple Data: Side-by-Side & Overlays
A single file variable used in the data-file-variable-list will always require the receiving

Percival program to accept a FILE as the first parameter. There are a number of Percival programs
that can be used in this case including the data processors and data viewers.

Multiple file variables joined together using only the AND keyword will require the receiving
Percival program to accept a SET of files as the first parameter. The AND keyword produces a list of
files for side-by-side display.

Multiple file variables joined together using the WITH keyword will require the receiving
Percival program to accept a SET of sub-sets of files. The WITH keyword in combination with the
AND keyword can produce a list of lists of files. This is typically for displays requiring data
overlays.

The Data Slate viewer tool, “data_slate”, is a non-trivial but great example of a program that
will accept any of the above as inputs and will display multiple data sets in various configurations.
The comment line below the following lines show the input format that the Percival program would
expect to receive for its first argument.

VISUALIZE a IN “data_slate”;

-- File: a
VISUALIZE a AND b AND C IN “data_slate”;

-- Set: { a, b, c }
VISUALIZE a WITH b AND c WITH d IN “data_slate”;
 -- Set: { { a, b }, { c, d } }

Examples

 The following example acquires data from the spectrometer, stores it into a variable with the
name trial, and will attempt to send the data to the user’s workstation. And if the “on screen”
preference is set, the file is put into a data processing tool on the screen of the operator.

EXPERIMENT trial IS
 ...
END EXPERIMENT;

VISUALIZE trial;

112 - VISUALIZE Automation Scripting Language

JEOL AISDG

 The next example processes the acquired data two different ways and sends each processed
file to the user’s workstation to be displayed in a separate data processor window.

PROCESS trial TO spectrum SAVE AS “a”;
PROCESS trial WITH “alternate_process” TO alternate SAVE AS “b”;

VISUALIZE spectrum AND alternate;

Automation Scripting Language 113

AISDG JEOL

Appendix

114 Automation Scripting Language

JEOL AISDG

Automation Scripting Language 115

AISDG JEOL

Parser Instructions

 An Automation parser instruction is a command that will cause the parser to perform some
action or to change its behavior when reading an Automation script file. Each instruction begins with
a # (pound sign) at the left-most position (column one) and any text to the end of the line are options
for the instruction or are ignored. Automation parser instructions may only be used between
statements at the outermost scope level of the script text unless noted otherwise. The Automation
parser recognizes the following commands:

#DEFINE ident [=] value

 The #DEFINE instruction adds a symbolic name for a constant Boolean, String, Number
(including the keywords INFINITY and -INFINITY), or Namespace value. The Namespace path is
defined by putting the marker “NAMESPACE::path” (without the quotes) in all caps at the beginning
of the value. The actual path portion may have quotation marks around it, but they are not required.

The author is then able to specify “$ident” or “$(ident)” (without the quotes) in the place of a
literal constant value anywhere within their script where a constant value would be legal. This will
insert the defined constant value in place of the identifier and has the same effect as if the actual
constant were used. The benefit is the elimination of proliferated duplicate constant values and
having named identifiers which can be easily modified at a single location in the script file.

#ECHO text

 All characters following the #ECHO instruction up to the end of the line will be printed on
Delta’s main console window when the script is parsed. This may be used anywhere in the script.

#REQUIRE option [=] state

 The #REQUIRE instruction provides the script author some control of the requirements that
the syntax of the script must follow. The following options are available:

 #REQUIRE help = Boolean
 When set to TRUE, help text will be required on all exposed variables and on every Method
parameter that is 1) not concealed, 2) has a mode of IN or INOUT, 3) is one of the basic Types other
than DATA, and 4) is defined on an exposed Method at the highest scope-level. The author may want
to turn this feature on to ensure that help text is not accidentally skipped and will be displayed on the
user interface of the Spectrometer Control tool.

 #REQUIRE case what = mode
 Sets the case style requirement for portions of the input script. <What> can be one of
“keyword”, “identifier”, “method”, “type”, or “subtype” and <mode> can be one of “uppercase”,
“lowercase”, “capitalize”, or “none”. Do not enter the quotation marks. Keyword refers to the
reserved words in the language, Identifier refers to the named values which are variables and
parameters, Method refers to the non-quoted Method names, Type and SubType refer to the names of
the kinds values a variable can hold. Specifying “subtype” will override any setting specified by
“type”. If a “subtype” case requirement is not specified, then subtype names will follow the rule for
base Types. The default for any unspecified case requirement is “none” indicating that case will not
be checked for that portion of text.

116 Automation Scripting Language

JEOL AISDG

#SORT entity [=] Boolean

 The #SORT instruction informs the system to order the specified entity. The only entity
supported at this time are Methods. Use the word ‘methods’ for the entity to specify whether the
Methods should be returned sorted alphabetically (TRUE) or kept in the order of the automation
script file (FALSE). Methods are sorted alphabetically by default when a sort order is not specified.

#STOP

 The #STOP instruction causes the parser to ignore all text following it up to the end of the file
or the point at which it encounters a #START instruction.

#START

 If the parser has been instructed to ignore text with the #STOP instruction, parsing will
resume on the line following the #START instruction. #START has no effect unless parsing has been
interrupted with #STOP. Because block comments cannot be nested, this is a good way to eliminate
large portions of text easily without using single line comments.

Future ideas:

#IF [NOT] condition
#ELSE
#END

 This idea is to allow for conditional parsing. The condition can be Namespace based or user
based to potentially disallow access to parts or features of the script based on clearance level.

Automation Scripting Language 117

AISDG JEOL

Table of Units

 The following tables show the available units that can be used in an Automation Script. Every
unit must be enclosed in square brackets, []. Each unit has a full and an abbreviated form. Either
form can be used to specify a unit. Similarly, unit prefixes have a full and an abbreviated form. If
the abbreviated form of the unit is used, then the prefix must also be abbreviated. For example:
[kHz], [khertz], and [kilohertz]are all valid units, however [kiloHz] is not valid.

UNIT PREFIXES
Name Abbrev. Power
yotta Y 1024 septillions
zetta Z 1021 sextillions
exa E 1018 quintillions

pecta P 1015 quadrillions
tera T 1012 trillions
giga G 109 billions
mega M 106 millions
kilo k 103 thousands
milli m 10-3 thousandths
micro u 10-6 millionths
nano n 10-9 billionths
pico p 10-12 trillionths

femto f 10-15 quadrillionths
atto a 10-18 quintillionths

zepto z 10-21 sextillionths

Units and unit prefixes (the full names and the abbreviations) are
case sensitive. The full name of each unit must be specified with
all lowercase letters. However, the unit abbreviations often
contain mixed case.

Refer to the discussion of the NUMBER Type to see how units
can be written. In some statements, units can be specified
without a number, but it is more common for a unit to be
attached to the end of a number without any space separation.

UNITS
Name Abbreviation

abundance abn
ampere A

byte B
candela cd
celsius dC

coulomb C
dalton Da
decibel Db
degree deg

electronvolt eV
farad F
gram g
gray Gy

henry H
hertz Hz
joule J

kelvin K
liter l

lumen lm
lux lx

meter m
mole mol

newton N
ohm O

pascal Pa
percent %
point pnt
ppm ppm

radian rad
second s
siemens S
sievert Sv

steradian sr
tesla T

thompson Tn
volt V
watt W

weber Wb

118 Automation Scripting Language

JEOL AISDG

Automation Scripting Language 119

AISDG JEOL

Table of Substitution Identifiers

The following table enumerates the symbols that have special meanings when they are used
within certain Strings in an Automation Script. These symbols are set apart from the text of the
String by surrounding their name with parentheses and preceding them with a dollar sign, $. For
example, the String “Today is $(DAY)” would become “Today is Monday” if today was, in fact,
Monday. The symbols are listed in upper case, but the case of the symbols does not matter.

The special symbols can be used:

• within a TEXT Type argument to a Percival operator or Service Manager request using the
CALL statement.

• within a TEXT Type argument to a Method invocation using the INVOKE statement.
• within a Namespace path, a Job attribute name, a Sample attribute name defining the default

value for a variable using the VAR or CONST statement.
• within the String to be evaluated following an EVALUATE keyword.
• within the value of an assignment of the SET statement.
• within the subject and message parts of the EMAIL statement.
• within the message part of the INFORM statement.
• within the filename of the SAVE AS statement in an EXPERIMENT block.

Symbol Includes the… Type

$(DATA_SERVER) Hostname of the data server storing the acquired data. TEXT

$(DATE)

Current date formatted per the settings specified by the Control
Panel / System Preferences of the Operating System. If the
date/time format preference cannot be discovered, the following
format will be used instead: $(DAY_NUM)-$(MONTH3)-$(YEAR)

TEXT

$(DAY) Name of the current day. TEXT

$(DAY3) Three letter abbreviation of the current day. TEXT

$(DAY_NUM) Number of the current day of the month (1-31). NUMBER

$(ERROR) Name of the current error condition. “None” if there is no error. TEXT

$(EVENT) Name of the current event. “None” if there is no event currently
being handled. TEXT

$(EXP.FILENAME) Filename of the Experiment. This is specified by the filename
parameter in the Header portion of the Experiment file. TEXT

$(FILENAME)
Innermost scoped filename attribute found in this order: Job,
Sample, then Method. If this attribute does not exist or is empty,
then the Method title will be used as the value.

TEXT

$(INSTRUMENT) IP Address of the NMR instrument executing this job. TEXT

$(JOB) Title of the running job. TEXT

$(JOB_ID) ID number of the running job. NUMBER

$(JOB.FILENAME) Filename of the Job specified in the Job’s attributes. TEXT

120 Automation Scripting Language

JEOL AISDG

Symbol Includes the… Type

$(JOB.attribute)

Value of the specified attribute of the current Job. This value can be
overridden by an attribute with the same name in the Sample or
Method. If * is used in place of attribute, a table will be inserted
which will list all the current Job’s attributes.
The use of * is only available where multi-line text is permitted.

Indeterminate

$(METHOD) Name of the currently executing Method. TEXT

$(METHOD.FILENAME) Filename of the Method specified in the Method’s attributes. TEXT

$(METHOD.attribute)

Value of the specified attribute of the current Method. If * is used in
place of attribute, a table will be inserted which will list all the
current Method’s attributes.
The use of * is only available where multi-line text is permitted.

Indeterminate

$(MONTH) Name of the current month. TEXT

$(MONTH3) Three letter abbreviation of the current month. TEXT

$(MONTH_NUM) Number of the current month (1-12). NUMBER

$(NOW)

Current date and time formatted per the settings specified by the
Control Panel / System Preferences of the Operating System. If the
date/time format preference cannot be discovered, the following
format will be used instead:
$(DATE) $(TIME) $(TIMEZONE)

TEXT

$(SAMPLE) Current sample identifier used for this Method. This shorthand
provides the same value as $(sample.sample id). TEXT

$(SAMPLE_KEY) Current sample database id number currently in use. NUMBER

$(SAMPLE.FILENAME) Filename of the Sample specified in the Sample’s attributes. TEXT

$(SAMPLE.attribute)

Value of the specified attribute of the current Sample. This value can
be overridden by an attribute with the same name in the Method. If
* is used in place of attribute, a table will be inserted which will list
all the attributes of the current Sample.
The use of * is only available where multi-line text is permitted.

Indeterminate

$(SITE) Site name of the instrument as specified by the Site preference.
Same as $(INSTRUMENT) if the Site preference has not been set. TEXT

$(TIME) Current system time of day formatted as HH:MM:SS. Where HH
represents the hour, MM represents the minute, and SS the seconds. TEXT

$(TIMEZONE) Abbreviated time zone offset of the NMR spectrometer. TEXT

$(TIMEZONE_LONG) Full name of time zone offset of the NMR spectrometer. TEXT

$(USER) Name of the user who is running this job. TEXT

$(variable-name)
$(VAR.variable-name)

Value of the variable (including constants and Method parameters)
specified by variable-name. If variable-name happens to be one of
these recognized words, use the second form.

Indeterminate

$(YEAR)
$(YEAR_NUM) Current year. NUMBER

 Any Method parameter or variable that shares its name with one of these special symbols is
eclipsed and cannot be accessed using the regular $(variable-name) form. To access the eclipsed
value, use the VAR keyword and a period before the name: $(VAR.variable-name).

Automation Scripting Language 121

AISDG JEOL

There are a few symbols in the table above that have their Type listed as Indeterminate. The
value of these symbols is not knowable because these forms can produce the value of any attribute of
the Job, Sample, or Method, or the value of any parameter or variable of the Method. Since these
values could be of any Type, it is not possible to know the Type of value to which these identifier
forms will resolve.

Below are some common attributes that may exist for a Job. They can be added to a Job
when a Job is selected in the Open Jobs list on the Job tab of the Spectrometer Control window.
Job attributes can be referenced within an Automation Script String literal using $(JOB.attribute).

Job Attribute Description
allow email This attribute controls how email can be sent during the execution of an

Automation script.
• When this attribute is not specified or if it has a value of TRUE or the

value “all”, email with any attachment is permitted with the EMAIL
statement.

• When this attribute is specified with a value of FALSE or with the
value “off”, the EMAIL statement will be ignored and no email will
be sent.

• If this attribute is specified with the value “none”, then email will be
permitted but requested attachments will not be included with the
message body.

• If this attribute is specified with the value “data”, then email will be
permitted but only data file attachments will be permitted with the
message body.

• If this attribute is specified with the value “pdf”, then email will be
permitted but only PDF attachments will be included with the
message body.

allow printing This attribute controls whether paper or PDF output can be generated.
• When this attribute is not specified, the PRINT and

PRESENTATION statements will only execute if the “Allow
Printing” spectrometer system preference is checked on the Printer
tab of the Spectrometer Preferences panel.

• When specified and is checked, the PRINT and PRESENTATION
statements will be allowed to execute even if the “Allow Printing”
spectrometer system preference is not checked.

• When specified and not checked, the PRINT and PRESENTATION
statements will not execute even in the “Allow Printing”
spectrometer system preference is checked.

comment This attribute is intended for the operator to document the purpose
of the Job. It is unformatted text.

filename This attribute specifies the Job part of the storage filename that can
be a part of the ultimate filename that is used to name and store the
raw experimental data files. By default, this is not a part of the
storage filename.

folder This attribute specifies part of the local storage path under the
system DATA directory where data files will be stored.

122 Automation Scripting Language

JEOL AISDG

Job Attribute Description
gradient shim Gradient Shimming will be allowed to run at the point when a

Sample is loaded (prior to running the Job group) if either of the two
conditions are met:
• When this attribute is not specified and the “Allow Gradient

Shimming” spectrometer system preference is checked on the Lock
& Shim tab of the Spectrometer Preferences panel, or

• When this attribute is specified and checked.
Setting this Job attribute will not guarantee that Gradient Shimming will
run. Each sample must either not contain a “gradient shim” attribute or
have its own “gradient shim” attribute checked for Gradient Shimming
to occur.

precedence This attribute controls the order in which Methods and Samples are
selected to run when a Job is queued containing multiple Methods
and multiple Samples. The available options are:
• “sample” (default): Run all Methods on each sample before

loading the next Sample.
• “method”: Run the first Method on every sample then run the

second Method on every sample continuing until the final
Method is run on every Sample.

printer This attribute specifies the name of the printer to which the PRINT
and PRESENTATION statements will send the data.

priority Reserved for future use.
project † This attribute specifies the Project name to which the data acquired

and the output produced by the Job is to be associated. It is also
included as part of the local storage path under the system DATA
directory and following the optional ‘folder’ attribute. See above.

recur † Normally a Job is run a single time. When this attribute is specified,
it allows a Job to run at a specific time at the specified interval. The
Start Time of the Job must be specified for this attribute to have an
effect. Available intervals are: hourly, daily, weekly, biweekly,
monthly, and yearly. It is recommended that the operator avoid
using “recur”, “resubmit”, and “sample repeat” together.

resubmit † Normally a Job is run a single time. When this attribute is specified,
it allows a Job to run multiple times. This is specified as a positive
integer and is decremented each time the Job is run. When the
value of this attribute reaches 0 (zero), the Job is removed from the
Automation Job Queue. With Jobs using multiple Samples, the
Samples are unloaded after each run of the Job. It is recommended
that the operator avoid using “recur”, “resubmit”, and “sample
repeat” together.

sample eject When specified and checked, the last Sample (that is normally left
loaded in the spectrometer) will be ejected from the spectrometer
when the Job has been completed.

Automation Scripting Language 123

AISDG JEOL

Job Attribute Description
sample repeat † Similar to “resubmit”, this can make a Job run multiple times.

When used with a single sample, the behavior is the same as
“resubmit”. However, with Jobs using multiple samples, it causes
the Job to run the specified number of times before the Sample is
unloaded. It is recommended that the operator avoid using “recur”,
“resubmit”, and “sample repeat” together.

visualize When specified and not checked, VISUALIZE statements will not
be executed so that acquired data will not appear on the operator’s
computer screen.

storage_comments Reserved for internal use.

Below are some common attributes that may exist for a Sample. They can be added to a
Sample by revealing the attributes area of a Sample in a Sample table row on the Sample tab of the
Spectrometer Control window. Sample attributes can be referenced within an Automation Script
String literal using $(SAMPLE.attribute).

Sample Attribute Description
abort on GS fail When specified and checked, the Job will be terminated if Gradient

Shimming runs and fails. Otherwise, if Gradient Shimming is
unable to finish normally the Job will continue.

analyst The name of the person who prepared the Sample or the intended
person to analyze the data generated from this Sample.

autoshim_mode When specified and checked, performs an AutoShim when the
Sample is loaded prior to any Gradient Shimming.

calibration Reserved for future use.
comment This attribute is intended to document the Sample by providing a

short description. It is unformatted text.
concentration † A number representing the volume of actual sample per solvent.
filename The sample component to the storage filename of acquired data.
folder This attribute specifies part of the local storage path under the

system DATA directory where data files will be stored.
gradient shim When specified and checked, Gradient Shimming will run when the

Sample is loaded if Gradient Shimming is permitted to run by the
state of the “gradient shim” Job attribute or the “Gradient Shim
Allowed” spectrometer system preference setting.

intent † A word or short phrase indicating the specific purpose for the
Sample. This is hidden from the user.

kind † An identifier indicating a Sample classification. Other attributes
may become more easily accessible based on the value of this
attribute.

124 Automation Scripting Language

JEOL AISDG

Sample Attribute Description
load shims Set to TRUE to reset the shims to the stored system shims when the

Sample is loaded into the spectrometer.
lock_achieve_point The minimal lock strength that must be achieved for the Lock to be

successfully enabled. The Lock Receiver Gain may be increased to
reach this level.

lock_gain Specifies the value of the Lock Receiver Gain to be used when a Job
is running on the Sample.

lock_level Specifies the power level of the Lock channel to be used when a Job
is running on the Sample.

lock_osc_offset Allows setting of the oscillator offset for the lock channel.
lock_phase Specifies the value of the Lock Phase to be used when a Job is

running on the Sample.
lock_settle_point The maximum lock strength that is allowed for the Lock to be

successfully enabled. The Lock Receiver Gain may be decreased to
maintain this level.

lock_state The Lock channel mode to be used on this Sample.
mas_spin_delay Additional delay after any timed MAS settling before an experiment

may begin.
mas_spin_set The rate of spin to be used for the MAS controller when a Job is

running on the Sample. See “spin_set” for Liquids samples.
mas_spin_state The solids Sample will spin when this attribute is specified and

checked. See “spin_state” for Liquids samples.
molecule This attribute is intended to hold a textual representation of the

Sample molecule – such as the International Chemical Identifier
(InChI) or the Simplified Molecular Input Line Entry Specification
(SMILES).

notebook id This attribute can be used at the discretion of the operator who
created the Sample. It is intended to be text that will identify the
notebook that contains the lab data about the Sample.

owner † This attribute is set to be the name of the operator who created the
Sample. It is not editable.

page number This attribute can be used at the discretion of the operator who
created the Sample. It is intended to be the page number of the
notebook (specified by the “notebook id” attribute) that contains the
lab data about the Sample.

Automation Scripting Language 125

AISDG JEOL

Sample Attribute Description
preparation † This attribute specifies whether the Sample preparation Method(s)

should be invoked from the Preamble Method in the Utilities.jaf
script. The Preamble Method should be invoked once before any
EXPERIMENT block. The preparation Method(s) currently includes
only Gradient Shimming.

printer The default printer to use for this sample. This will override the
system printer and any printer specified in the Job attributes.

probe required The name or number of the required probe. If the value is a number,
then the Sample will run only if the value matches the Id of the
installed probe. If the value is text, then the Sample will only run if
the value matches the Type of the installed probe.

reserved Specifies the operator user id for whom this Sample is reserved.
Other users will not be able to submit Jobs with this Sample.

sample eject When specified and checked, the last Sample (that is normally left
loaded in the spectrometer) will be ejected from the spectrometer
when the Job has been completed. If specified, this will override the
setting in the Job attributes.

sample height † The offset height of the liquid sample in the tube. This should be
measured in millimeters.

sample id † The unique textual identification tag for the Sample.
shared † Reserved for internal use.
slot † The slot number into which the Sample will be physically placed.
solid_cap The material of the solids sample tube cap.
solid_tube The material of the solids sample tube body.
solvent † The solvent in which the Sample is dissolved.
spin_set The rate of spin to be used when a Job is running on a liquid

Sample. See “mas_spin_set” for solids samples.
spin_state The liquid Sample will spin when this attribute is specified and

checked. See “mas_spin_state” for solids samples.
temp_delay The number of seconds to wait after the temperature controller has

reached the specified temperature set point.
temp_ramp_step The maximum interval of increase or decrease in temperature that is

allowed while the temperature controller is moving toward the target
temperature value specified by the “temp_set” attribute.

temp_ramp_wait The number of seconds to wait at each temperature interval while
the temperature is moving toward the target temperature.

126 Automation Scripting Language

JEOL AISDG

Sample Attribute Description
temp_set Specifies the system temperature setting in degrees Celsius when a

Job is running on this Sample.
temp_state The temperature controller will be turned on when this attribute is

specified and checked.
tube type † The type of tube in which the Sample resides.
verified † Reserved for internal use.

There is only one common attribute that may exist for a Method. Method attributes can be

added when a Method is selected on the Job tab of the Spectrometer Control window. Method
attributes can be referenced within an Automation Script String literal using
$(METHOD.attribute).

Method Attribute Description
filename This attribute specifies the Method part of the storage filename that,

by default, is a part of the ultimate filename used to name and store
the raw experimental data files.

The author of an Automation Script and the user defining a Job may, of course, add an

attribute of any name to a Job, Sample, or Method. The lists above are the common attributes
defined by the Delta and Control software – some of which are used by the Automation system
(like “comment” and “solvent”) and others exist for user convenience (like “concentration” and
“notebook id”).

† Attributes marked with this symbol cannot be set or modified in an Automation
Script. Their values cannot be changed at run-time. The values for these
attributes must be set prior to submitting a Job to the instrument.

Automation Scripting Language 127

AISDG JEOL

Writing a Duration Statement Expression

The DURATION statement expression can be a tricky thing to get correct and accurate. This
explanation and the tips below should help the author to write elaborate expressions.

The evaluation of the entire expression must result in a number with a unit of seconds. If this
will not be true for any part of the expression, then the expression will be discarded and the Method
time will fail to update.

Literal values, named constants, exposed variable names, names of Method parameters, and
EXPERIMENT block names can all be referenced in a DURATION statement. Literal values are
STRING, NUMBER, and BOOLEAN values like: “attn”, 7 or 7[s], and True respectively. Named
constants are replaced in the expression by the values they represent. Exposed variable names and
the names of Method parameters are replaced in the expression by the values that the user has
supplied for them on the user interface. EXPERIMENT block names are replaced in the expression
by the time value that is calculated for the experiment specified by the COLLECT clause after all of
the experiment parameter assignments (SET statements within the EXPERIMENT block) have been
updated to the experiment.

Besides the basic mathematical operators that can be used in the expression, there is a
decision-making operator to allow expression branching. The ternary operator, denoted with the
symbols ?:, has three parts: a test and two result expressions. The operator is written like in the
form: test ? true-expression : false-expression.

«TIP» Each of these three components must be surrounded by parenthesis if they are compound

expressions and if this operator is used as a sub-expression, then it will probably require parenthesis
around the entire operator as:

 ((compound-test)

? (compound-true-expression)
: (compound-false-expression))

The first part of the ternary operator is the test. This part must result in a Boolean value when
evaluated. If the result of evaluating the test part is True, then the evaluated value of the true-
expression (after the question mark) will be the result. Otherwise, if the result of evaluating the test
part is False, then the evaluated value of the false-expression (after the colon) is the result.

«TIP» All of the sub-expressions need to be proper mathematical expressions regardless of whether
the true-expression or the false-expression of the ternary operator will be the result

«TIP» Oftentimes a variable that holds a unitless numeric value needs to be used in the expression in
places where a unit is required. For example, units much match when adding two numbers. To
ensure that the value will have the expected unit when the expression is evaluated, the author can
provide the proper unit for the number with the ` (backtick) operator. To force the unit of seconds on
a NUMBER variable named ‘foo’ write: foo`[s].

More sophisticated expressions must be written to gain timing accuracy. This often requires
substituting a variable value into a named experiment parameter when the assignment does not

128 Automation Scripting Language

JEOL AISDG

happen within the SET statements of the EXPERIMENT block. In these cases, there is a special
syntax that can be added to follow an EXPERIMENT block name. This syntax associates a variable
name to an experiment parameter one or more times. The syntax is:

 experiment-name@(exp-param <- var-name)

There can be no other characters, including spaces, around the @ character – it must follow the
EXPERIMENT block name immediately and be followed by the open parenthesis. To associate more
pairs to an experiment, add more exp-param <- variable-name parts within the parentheses
and separate each pair with a comma.

exp-name@(exp-param1 <- var-name1,…, exp-paramn <- var-namen)

Automation Scripting Language 129

AISDG JEOL

Example Script

AUTOMATION VERSION 2;

TRANSLATE printer_help
 ALL “Print result on paper?”;
 ES “¿Resultado de la impresión en el papel?”;

METHOD Proton(IN print_to : TEXT = “”, HELP printer_help) IS

 CATEGORY “1d”, “1h”, “standard”;

 HELP “Proton Acquisition”;
 PURPOSE “Proton with 12[ppm] -> -0.5[ppm] plot”,
 “Optionally send the data to a printer.”;

 EXPOSE VAR rgain : NUMBER = 50, HELP “Observation receiver gain”;
 EXPOSE VAR scans : NUMBER = 8, HELP “Number of scans to perform”;

 TRANSLATE acquire ALL “Acquiring data...”;
 ES “Adquiriendo datos...”;

 INFORM TO CONSOLE acquire;

 SET MACHINE temp_state = “TEMP ON”;
 PROMOTE “temp_state” TO SAMPLE;

 EXPERIMENT Proton IS
 SAVE AS “$(EXPERIMENT)_PROTON”;
 COLLECT “1d/single_pulse”;
 SET
 auto_gain = TRUE;
 force_tune = FALSE;
 relaxation_delay = 4[s];
 scans = scans; --job_parameter = Method_variable
 x_offset = 5[ppm];
 x_sweep = 15[ppm];
 CONSTRAIN scans >= 20;
 END EXPERIMENT;

 REMARK handle any processing errors
 ON ERROR “process-error” DO
 INFORM “There was a problem processing the data!”;
 FINISH;
 END ERROR;

 INFORM TO CONSOLE “Processing data...”;
 PROCESS Proton ELSE “1dh_noclip.list”;

 IF print_to /= “” THEN
 PRESENTATION ProtonPlot TEMPLATE “params_right_runtime_proton.pmt”
 WITH DATA Proton TO PRINTER print_to;

 EMAIL USER SUBJECT “Proton data”
 MESSAGE “Processed Proton data print-out attached”
 ATTACH ProtonPlot;
 ELSE
 INFORM INFO WITH DATA AND TIME TO LOG “Data was not printed”;
 END IF;

END METHOD;

130 Automation Scripting Language: Grammar (EBNF)

JEOL AISDG

Automation Scripting Language: Grammar (EBNF) 131

AISDG JEOL

Automation Script Grammar

action ::= CALL ([PERCIVAL] ident) | (SERVICE string) [(argument_list_files)]

ident is the name of a Percival operator which may be defined in a separate file external to the
Automation script or the operator may be constructed within a PERCIVAL statement. String is the
standard invocation format of a service call. Note that resulting values will not be received by
asynchronous service calls.

action_statement ::= action ;

addresses ::= email_destination {AND email_destination}

argument ::= constant | arrayed_ident

argument_files ::= (RAW | PROCESSED | ALL [FILES]) | argument

RAW specifies a set of all of the raw data files that have been collected up to this point.
PROCESSED specifies a set of all the processed files that have been created up to this point. ALL
specified all the raw data files that have been collected and all of the processed data.

argument_list ::= [ident =>] argument {, [ident =>] argument}

argument_list_files ::= argument_files {, argument_files}

Even though the grammar cannot show it, only one instance of either RAW, PROCESSED, or ALL
may exist in the entire argument list.

arrayed_ident ::= ident [(positive_integer)]

assign_block ::= SET assign_variable | assign_external | sample_attr_rem

Allows values to be assigned to one or more destination storage locations.

assign_exp_block ::= SET [PARAMETER[S]] <(ident assign_no_process) | wildcard_assign>

Allows values to be set to one or more experimental parameters.

assign_external ::= JOB | NAMESPACE | (SAMPLE sample_set_modes) | (MACHINE [PARAMETER[S]])
 <(string_var assign_no_process) | wildcard_assign>

assign_no_process ::= = external_value | ({external_value ELSE} action_statement | prompt | (expression ;))

assign_variable ::= [VAR] <assignment | wildcard_assign>

assignment ::= ident = [CAST] external_value |
 ({external_value ELSE} action_statement | processing | prompt | (expression ;))

The ident is the name of a variable that has been previously declared with a VAR statement. If
processing is used then the TO clause of the PROCESS command cannot be included.

assignments ::= <assign_exp_block> {constrain_block}

association ::= { {{ ident , constant }} }

132 Automation Scripting Language: Grammar (EBNF)

JEOL AISDG

attribute_reference ::= JOB | SAMPLE | NAMESPACE string_var

AUTOMATION* ::= version [CATEGORY string {, string} ;] <basic_statements>

base_type ::= simple_type | DATA

Variables of the DATA Type can hold references to data files.

basic_statements ::= method | method_assertion | comment | type_declaration | translation | include | macro_definition

binary_digit ::= 0 | 1

binary_number ::= #b <binary_digit>

boolean_expression ::= sub_expression {AND | OR | XOR sub_expression}

boolean_value ::= TRUE | FALSE | YES | NO

casing ::= LOWERCASE | UPPERCASE | CAPITALIZE

code ::= PERCIVAL <<< Percival_Code >>> ;

Percival_Code is a block of valid Percival statements. If these statements were to be wrapped in an
operator definition, then the operator can be executed with the CALL statement.

collection ::= [CONCEAL | EXPOSE] [INTERIM] [QUIET] [SCOUT] EXPERIMENT ident IS
 exp_block
 END EXPERIMENT [ident] ;

ident is the title of the experiment to be performed. This title can be used as a constant reference to a
data file after the experiment has completed. The optional ident at the end of the EXPERIMENT
block must match the first ident exactly. If the COLLECT statement within the EXPERIMENT
block results in multiple data files being collected, then the individual files can be referenced like an
array with the syntax: ident(n) where n is a positive integer. Note that ident is equivalent to ident(1).
Specifying INTERIM will cause every data file collected within the block (both raw and processed)
to be deleted once the enclosing Method completes.
Specifying SCOUT will cause the system to check for a similar and recently collected file to possibly
skip the acquisition.

comment ::= REMARK {Character} $

This is a comment line and does not perform any action. The $ character indicates the end of the line
so any text between the REMARK keyword and the end of the line is ignored as a comment.

conditional_test ::= (attribute_reference [Expression_Remainder]) | boolean_expression

The Expression_Remainder is the rest of a Boolean expression with the assumption that
attribute_reference is the first value part of the full expression. So, Expression_Remainder could be
“> 0” or “* 2 = 10”. Of course the quotes should not be included as part of the expression.

const_def ::= CONST nondata_init | (ident : DATA = expression)

Creates a named reference to a value that is immutable. Expression must result in a String value.

constant ::= simple_constant | list_value | enum_indexed | NULL

constrain_block ::= CONSTRAIN <constrain_element>

Automation Scripting Language: Grammar (EBNF) 133

AISDG JEOL

constrain_element ::= ident {constraint constant | ident} [multiple_constraint]
 [MODULO positive_number] [units_constraint] ;

Both of the uses of ident are references to experiment parameters.

constraint ::= <= | < | >= | >

days ::= nonneg_number DAY[S]

decimal_digit ::= octal_digit | 8 | 9

decimal_number ::= [#d] <decimal_digit>

delay_statement ::= DELAY (time [AFTER ident]) |
 (UNTIL time_of_day [[WITH] COUNTDOWN [INTERVAL time]]) [when_clause] ;

If specified, ident must be data file variable. By including the optional AFTER clause, the author
informs acquisition to wait the specified amount of time from the completion of the specified data
rather than from the current time.

depends_value ::= (EVALUATE (expression)) | (NAMESPACE string) [ELSE constant]

dependency ::= DEPENDS [ON] ident_list enable_clause | (depends_value [, enable_clause])

email_destination ::= USER | string_var

There are three options for the destination of an email message.
• USER will send email to the operator who submitted the Automation script for processing.
• A literal String specifies a particular email address to which the email will be sent.
• An identifier should reference a TEXT variable that holds a valid email address to which the email

will be sent.

enable_clause ::= ENABLE [WHEN] (boolean_expression)

enum_indexed ::= ident [signed_integer]

The ident is the name of a previously defined ENUM Type.

enum_list ::= (string_list)

enum_declaration ::= ENUM ident IS enum_element {AND enum_element} ;

The ENUM statement creates a new Type that could be thought of as a sub-class of TEXT. ident is
the name of the new variable Type.

enum_element ::= enum_list | action | enum_namespace

enum_namespace ::= NAMESPACE [casing] [KEYS] string
 [EXPOSE | IGNORE enum_list] [EXCLUDE enum_list]

EXPOSE and IGNORE can only be used if the KEYS keyword is also specified.

error_block ::= DO statement_block [RETRY [when_clause] ;] END ERROR

The RETRY statement does not have be the last statement at the end of the statement-block. It may
also be used multiple times and within other statement blocks within the error_block.

134 Automation Scripting Language: Grammar (EBNF)

JEOL AISDG

error_handler ::= ON ERROR [ALL | string] CONTINUE | EXIT | termination_mode | error_block ;

event_name ::= PREPARE | COMPLETE | ABORT

exit_statement ::= EXIT [when_clause] ;

The EXIT statement may only be used inside of a REPEAT block.

exp_block ::= [save_clause ;] exp_file [optimization] {assignments}

If a filename is not specified by not including the save_clause then the Experiment title, as defined by
the EXPERIMENT block, will be used for the filename.

exp_file ::= COLLECT string_var ;

string_var contains the experiment file used to acquire the data. If string_var is an identifier, it must
be declared as a constant.

expression ::= constant | Percival_Expression

external_value ::= attribute_reference | (EVALUATE (expression))

string_var is either the name of an attribute of the job, an attribute of the current sample, or it is a
Namespace path.

factor ::= parenthesized | (NOT factor) | boolean_value | ident

ident must be a variable of the BOOLEAN Type.

fractional_part ::= . integer [E signed_integer]

group ::= GROUP
 statement_block
 END GROUP ;

A GROUP block defines a set of operations that cannot be interrupted.

help_info ::= HELP translatable_list

hex_digit ::= decimal_digit | A | B | C | D | E | F

hex_number ::= #x <hex_digit>

hours ::= nonneg_number HOUR[S]

ident ::= letter {[_] letter | decimal_digit}

ident_list ::= ident {, ident}

if_block ::= if_part {ELSE if_part} [ELSE statement_block] END IF ;

An IF keyword that follows an ELSE keyword on the same physical line of text is considered an
ELSE case for the same IF block. If a nested IF block is required after the ELSE keyword, then the
IF keyword following the ELSE must be on a separate line.

Automation Scripting Language: Grammar (EBNF) 135

AISDG JEOL

if_part ::= IF conditional_test THEN
 statement_block

include ::= INCLUDE string [[TO] DOMAIN ident] ;

string is the filename or URL of an external Automation script file.

inform ::= INFORM [warnings] [WITH DATE [AND TIME]]
 [TO print_mode {AND print_mode}] ident | string_list ;

initial_value ::= external_value | ({external_value ELSE} expression)

inout_data_def ::= ident : DATA [= expression]

inout_def ::= ([EXPOSE] [ACTIVE | PASSIVE] inout_param [, dependency]) | (CONCEAL inout_param) |
 (OUT typed_ident) [, help_info]

A parameter of the DATA Type does not require an initialization value. If an initial value is given for
DATA Type parameters, the expression must result in a TEXT Type value. All other IN and INOUT
parameters must have an initialization value.

inout_param ::= IN | INOUT nondata_init | inout_data_def

inouts ::= inout_def {; inout_def}

integer ::= decimal_number | hex_number | binary_number | octal_number

invocation ::= INVOKE [REF] {ident .} string_var ([argument_list]) ;

string_var must be the title of a previous Method block or the name of a TEXT type variable. Ident
is the domain name that was specified to locate the included Method.

letter ::= A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

limit_block ::= LIMIT limiter DO
 statement_block
 [EXPIRED
 statement_block]
 END LIMIT ;

The LIMIT block will put a constraint on the set of operations in the first statement_block after the
DO keyword. Currently, the only constraint is a time limit that will cause the first statement_block to
abort when the time limit is exceeded. If the optional EXPIRED section is provided, the
statement_block after the EXPIRED keyword will execute if the time limit is exceeded.

limiter ::= TIME time

list_value ::= { [constant {, constant}] }

list_declaration ::= LIST ident IS ASSOCIATION | (OF base_type) ;

Creates a new Type of LIST named ident whose values must be of the Type specified by base_type.

listed_numbers ::= LIST [INCREASE | DECREASE] (number {, number})

136 Automation Scripting Language: Grammar (EBNF)

JEOL AISDG

loop_block ::= <statement | exit_statement>

The exit_statement can also be nested within other statement blocks within the loop_block.

loop_condition ::= WHILE | UNTIL conditional_test

loop_expression ::= loop_condition | loop_range | loop_over | loop_times

loop_over ::= ident [IN ident | list_value]

The first ident is an automatically declared loop variable that exists only during the execution of the
loop. The second ident specified after the IN keyword is a variable that must be of the LIST Type. If
the IN part is omitted then infinite loop.

loop_range ::= [ident] [FROM expression] TO expression [STEP expression]

The first ident is the name of a loop variable that exists only during the execution of the loop.

loop_times ::= integer | ident TIME[S]

The ident is a variable that holds a NUMBER Type value.

macro_definition ::= MACRO ident [(macro_param {, macro_param})] IS statement_block END MACRO [ident] ;

The first ident is the title of the macro. The optional ident at the end must match the macro title.
MACRO statements cannot be used in the statement_block.

macro_expansion ::= EXPAND MACRO ident [(argument {, argument})] ;

The ident is the title of a defined macro. If a variable is used for an argument, then it must be
declared as a constant.

macro_param ::= ident [= constant]

method ::= [CONCEAL | EXPOSE] METHOD string_var [(inouts)] [WHEN event_name] IS
 method_block
 END METHOD [string_var] ;

string_var is the title for the Method. The title will be visible externally in order to choose and
launch the Method. The optional string_var at the end must match the first string_var.

method_assertion ::= [ASSERT] [CONCEAL | EXPOSE] METHOD string_var ;

The order of ASSERT and CONCEAL does not matter when both are specified.

method_block ::= method_optionals statement_block

method_optionals ::= [CATEGORY translatable_list ;] [HELP string_var ;] [PURPOSE translatable_list ;]
 {PARAMETER ident (dependency [, help_info]) | help_info ;}
 [DURATION number_unit | Percival_Expression ;]

A variable after the HELP or PURPOSE keyword must be a translation identifier.
The ident must be a Method parameter name.

minutes ::= nonneg_number MINUTE[S]

Automation Scripting Language: Grammar (EBNF) 137

AISDG JEOL

multiple_constraint ::= (DIVISIBLE [BY]) | (MULTIPLE [OF]) positive_number [INCREASE | DECREASE]

multiplier ::= * | / | DIV | MOD

nondata_init ::= typed_ident_nodata = initial_value

nonneg_number ::= [+] integer [fractional_part]

number ::= signed_integer [fractional_part]

number_constraint ::= [INTEGER | (PRECISION positive_integer)]
 ([FROM] number TO number [STEP positive_number]) | listed_numbers
 [[WITH] (UNIT unit) | (NO UNIT)]

If the optional INTEGER keyword is specified, then the NUMBER Type will be restricted to integral
values and numbers assigned to this Type will be rounded.
If the optional UNIT clause is provided, numbers of this Type are required to have the specified unit.

number_declaration ::= NUMBER ident IS number_constraint | (NAMESPACE string) ;

Creates a new Type that could be thought of as a sub-class of NUMBER. ident is the name of the new
variable type. Variables that have the Type specified by ident are restricted to a range of values.

number_sign ::= + | -

number_unit ::= number [unit]

octal_digit ::= binary_digit | 2 | 3 | 4 | 5 | 6 | 7

octal_number ::= #o <octal_digit>

optimization ::= OPTIMIZE (ident {, ident})
 [LIMIT NO | (YES | positive_integer [CONTINUE | TERMINATE])]
 CALL string_var WITH optimizer_param {, optimizer_param}

optimizer_param ::= ident = number_unit {, number_unit} ;

parenthesized ::= (boolean_expression)

positive_digit ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

positive_integer ::= {0} positive_digit {decimal_digit}

positive_number ::= (positive_integer [fractional_part]) | (<0> . positive_integer [E signed_integer])

presentation ::= PRESENTATION [ident] TEMPLATE string_var WITH use_list
 [printer_context] [print_destination] ;

The optional ident is the title of the print job. This title is required if the result of the print will be
used in a subsequent statement. string refers to a presentation layout file.

print_attribute ::= ident = ident | simple_constant

print_destination ::= TO printer_or_file {AND printer_or_file}

138 Automation Scripting Language: Grammar (EBNF)

JEOL AISDG

print_mode ::= CONSOLE | DIALOG | LOG

printer_context ::= CONTEXT string_var

printer_or_file ::= (JOB PRINTER) | (PRINTER [string_var]) | (FILE [REF] string_var) [printer_context]

The first string_var is either the name of a printer or a variable containing the name of a printer. The
second string_var is a literal filename or an identifier containing a filename to where the print output
will be saved. The extension of this filename will dictate the type of file that will be generated.

printing ::= PRINT [ident] DATA arrayed_ident
 [WITH ([ALL] PARAMETER[S]) | (PARAMETER LIST string_var | ((string_list)))]
 [printer_context] [print_destination] ;

The optional ident is the title of the print job. This title is required if the result of the print will be
attached to an email. The arrayed_ident identifies the data file that will be printed by referencing a
title of an EXPERIMENT block.

printing_context ::= PRINT CONTEXT ident IS <print_attribute ;> END [PRINT] CONTEXT ;

probe_tune ::= PROBE [FORCE [boolean_value | ident]] [DUAL [boolean_value | ident]]
 <COIL string_var DOMAIN string_var OFFSET number_unit | ident>

processing ::= PROCESS [DATA] arrayed_ident
 [WITH | ELSE string_var] [TO arrayed_ident] [save_clause] ;

The first arrayed_ident is the data file to process. The second optional arrayed_ident is the variable
to store the result. string_var is a literal filename or identifier referencing a filename containing a
processing list. If string_var is an identifier, then it must be of the TEXT Type.

promote_scope ::= PROMOTE SHIMS | string_var {AND SHIMS | string_var} TO scope_level ;

prompt ::= PROMPT string_var prompt_options ;

string_var is a literal String or a Text variable that asks a question of the operator. The query will be
displayed on the information area of the Spectrometer Control tool. The result needs to be stored into
a properly typed variable.

prompt_answer ::= (constant | ident) | (SHOW constant | ident AS string)

prompt_answers ::= prompt_answer <, prompt_answer>

prompt_statement ::= PROMPT string_var TO ident prompt_options ;

prompt_options ::= [OPTIONS | BUTTONS prompt_answers] [DEFAULT string_var] [ICON warnings | string]

raise_error ::= RAISE string [when_clause] ;

string is the name of the error to raise.

relational_op ::= = | /= | < | <= | > | >=

Automation Scripting Language: Grammar (EBNF) 139

AISDG JEOL

repeat_block ::= REPEAT [loop_expression DO]
 loop_block
 [THEN
 statement_block]
 END REPEAT ;

retention ::= RETAIN arrayed_ident [save_clause] ;

sample_attr_rem ::= SAMPLE REMOVE string {AND | , string} ;

sample_set_modes ::= [SAVE | INTERIM] [CONST] [CONCEAL]

The order of these keywords does not matter when more than one is specified.

save_clause ::= SAVE [AS] string_var

string_var is a filename or a variable that contains a filename.

scope_level ::= USER | PROJECT | JOB | SAMPLE | METHOD

seconds ::= nonneg_number SECOND[S]

send_email ::= EMAIL [ALERT] [TO] addresses {CC | BCC addresses} [SUBJECT string_var]
 MESSAGE translatable_list
 {ATTACH arrayed_ident {AND arrayed_ident}} ;

It is possible for the author of the Automation script to include variables into the SUBJECT line or
the MESSAGE text by including the variable name of the desired value preceded by a back-slash ‘\’
character. The variable name will be replaced by the textual representation of the variable’s current
value. The textual representation of a DATA Type variable is the filename of the data. arrayed_ident
identifies a data file or printed output variable to include in the email as an attachment.

signed_integer ::= [number_sign] integer

simple_constant ::= boolean_value | string | number_unit

simple_expression ::= [number_sign] term {number_sign | relational_op term}

simple_type ::= BOOLEAN | NUMBER | TEXT | LIST

Variables of the BOOLEAN Type can hold values of TRUE or FALSE.
Variables of the NUMBER Type can hold numeric values and numeric values with units.
Variables of the TEXT Type can hold Strings.
Variables of the LIST Type can hold sets of the above three Types and DATA.

statement ::= action_statement | assign_block | basic_statements | code | collection | delay_statement |
 error_handler | group | if_block | inform | invocation | limit_block | presentation | printing |
 printing_context | processing | promote_scope | prompt_statement | raise_error | repeat_block |
 retention | send_email | termination | tuning | visualization | macro_expansion

statement_block ::= <statement | variable_def>

string ::= “ {Character} ”

string_list ::= string {, string}

string_var ::= string | ident

140 Automation Scripting Language: Grammar (EBNF)

JEOL AISDG

sub_expression ::= simple_expression {relational_op simple_expression}

term ::= factor {multiplier factor}

termination ::= termination_mode [when_clause] ;

termination_mode ::= FINISH | (TERMINATE [[WITH] STATUS string_var])

FINISH will end the executing Automation Method and retain any data collected.
TERMINATE will end the executing Automation Script as well as remove all generated files
including acquired data and printed files. Obviously, printed files or sent email cannot be undone.

time ::= time_short | time_long | ident

time_long ::= (days [hours] [minutes] [seconds]) | (hours [minutes] [seconds]) | (minutes [seconds]) | seconds

time_12hour ::= ([0] decimal_digit) | (1 0 | 1 | 2) : time_60minutes [AM | PM]

time_24hour ::= ([0 | 1] decimal_digit) | (2 0 | 1 | 2 | 3) : time_60minutes

time_60minutes ::= (0 | 1 | 2 | 3 | 4 | 5) decimal_digit

time_of_day ::= time_12hour | time_24hour

time_short ::= [[nonneg_number :] nonneg_number :] nonneg_number : nonneg_number

translatable_list ::= string_var {, string_var}

translation ::= TRANSLATE ident <[Language_Code | ALL] string_list ;>

The ident defines a new translation key to be used in place of Strings in various statements.
Language_Code is one of the standard two or three letter language codes defined by ISO 639. Only
one instance of ALL or Language_Code being omitted is permitted.

tuning ::= TUNE probe_tune ;

type_declaration ::= enum_declaration | number_declaration | list_declaration

typed_ident ::= ident : base_type | user_type

typed_ident_nodata ::= ident : simple_type | user_type

unit ::= [Unit]

units_constraint ::= [WITH] (UNIT unit [FROM arrayed_ident]) | (NO UNIT)

arrayed_ident is the name of the data file to use for the unit conversion.

use_entry ::= [DATA] arrayed_ident [FOR [PARAMETER] integer | string_var]

arrayed_ident is the name of a data file. The value after the PARAMETER keyword indicates the
runtime parameter name or number for the presentation template.

use_list ::= use_entry {AND use_entry}

Automation Scripting Language: Grammar (EBNF) 141

AISDG JEOL

user_type ::= {ident .} ident

The last of all the idents is the name of a user defined Type. All preceding idents are domain names.

var_def ::= VAR inout_data_def | (typed_ident_nodata [= initial_value])

Creates a named reference to a value that can be modified by the SET statement.

var_exposed ::= EXPOSE [ACTIVE | PASSIVE] const_def | var_def [, dependency]

variable_def ::= ([CONCEAL] const_def) | ([CONCEAL] var_def) | (var_exposed [, help_info]) ;

version ::= AUTOMATION [TYPES] VERSION positive_integer [PURPOSE string_list] ;

visualization ::= VISUALIZE visualized_list {AND visualized_list} ;

visualized_list ::= visualized_overlays {AND visualized_overlays} [IN string]

The string following the optional keyword IN is the name of a Percival tool that can receive a file or
set of files as its first parameter.

visualized_overlay ::= ident {WITH ident}

warnings ::= INFO | STATUS | WARNING | ALERT | ERROR | FATAL

Various status levels for messages from least important to most importance.

when_clause ::= WHEN conditional_test

wildcard_assign ::= * = association | ident | (NAMESPACE string_var)

142 Automation Scripting Language: Grammar (EBNF)

JEOL AISDG

Future ideas:

wait ::= WAIT wait_rule [INTERVAL time] [EXPIRES time] [THEN statement_block] ;

Holds up execution by periodically checking the wait_rule. The check will happen every N seconds
or after the time specified after the INTERVAL keyword has past.
EXPIRES will place a maximum amount of time to pause giving the wait_rule a chance to succeed.
The THEN clause is only executed if the time after the EXPIRES keyword has past. Execution
continues with the following statement when either the wait_rule succeeds or the time expires –
whichever occurs first.

wait_rule ::= (UNTIL | WHILE conditional_test) | (UNTIL SIGNAL string)

UNTIL will cause the execution to hold until the conditional_test evaluates to a True value.
WHILE will cause the execution to hold until the conditional_test evaluates to a False value.
string is an event received from an external source – possibly Namespace.

delete ::= DELETE arrayed_ident ;

Removes a file from a Data Server.

report ::= PRINT [PEAKS | INTEGRALS] DATA arraryed_ident [printer_context] [print_destination] ;

set_process_list ::= SET PROCESS ident = string ;

Sets the unapplied processing list in a data file. Ident must reference data and string must name a
processing list.

Symbol Description

[] Optional - 0 or 1 of items within.

{ } Optional series - 0 or more of items within.

< > Series - 1 or more of items within.

| Choice of left or right side. (Use grouping
to put multiple items into a choice.)

() Group of items.

$ The end of a physical line of text.

* The rule title in CAPITALS is the root (starting point) of the Automation grammar.

	Automation Scripting Language
	Introduction
	Automation Jobs
	Automation Script Files
	Comments
	Definition of Terms
	Strings
	Identifiers
	Keywords

	Location of Support Files
	File Path URLs
	Directory Search Order

	Value Types
	Boolean
	Boolean Expressions

	Number
	Number Bases

	Text
	List
	Data
	Sub-Types

	Value Type Casting
	Duration Syntax
	Basic Script Structure
	Statements
	Call
	Const
	Delay
	Email
	Enum
	Exit
	Experiment
	Finish
	Group
	If
	Include
	Inform
	Invoke
	Limit
	List
	Macro
	Method
	Number
	On Error
	Percival
	Presentation
	Print
	Print Context
	Process
	Promote
	Prompt
	Raise
	Remark
	Repeat
	Retain
	Retry
	Set
	Terminate
	Translate
	Tune
	Var
	Visualize

	Parser Instructions
	Table of Units
	Table of Substitution Identifiers
	Writing a Duration Statement Expression
	Example Script
	Automation Script Grammar

