
Delta File Format Information JEOL USA, Inc.
October 2010
Copyright 2010

This document describes the physical data layout of Delta NMR Data Files
version 1.2.

This document may be used to translate Delta NMR data into
other formats. This document is NOT sufficient to translate other formats
into Delta NMR format. There are various semantic and alignment issues
which are not discussed here.

The data file is divided into these sections, in this order:
 Header Section
 History Section
 List Section
 Parameter Section
 Data Section
 Context Section
 Annotation Section

The History, Context, and Annotation sections are beyond the scope of this
document and are not discussed.

The data file begins with the Header at file offset 0. All fields in the
header are always Big Endian format. The offsets for the other sections
are stored in the Header. The History and List sections are always
stored in big endian format. The Parameter, Data, Context, and Annotation
sections may be stored in either big or little endian formats, according
to the Endian header field.

Header Section

Each line begins with the name of a header field, followed by its offset
from the beginning of the file, its size in bytes, and its type. Detailed
descriptions of each field follow.

The file supports up to 8 dimensions, so each field which is listed
"per axis" is an array of 8 elements. All comments that refer to Name[n]
are refering to the nth element of the array (starting from 1) corresponding
to axis n.

Field Name Offset Size Type
------------------- ------ ---- ----
File_Identifier 0 8 String
Endian 8 1 Enum
Major_Version 9 1 Unsigned
Minor_Version 10 2 Unsigned
Data_Dimension_Number 12 1 Unsigned
Data_Dimension_Exist 13 1 1-Bit Boolean per axis
Data_Type 14 2/8 Enum (2-Bits)
Data_Format 14 6/8 Enum (6-Bits)
Instrument 15 1 Enum
Translate 16 8 1-Byte Unsigned per axis
Data_Axis_Type 24 8 1-Byte Enum per axis

Data_Units 32 16 2-Byte Unit Structure per axis
Title 48 124 String
Data_Axis_Ranged 172 4 4-Bit Enum per axis
Data_Points 176 32 4-Byte Unsigned per axis
Data_Offset_Start 208 32 4-Byte Unsigned per axis
Data_Offset_Stop 240 32 4-Byte Unsigned per axis
Data_Axis_Start 272 64 Double per axis
Data_Axis_Stop 336 64 Double per axis
Creation_Time 400 4 Time Structure
Revision_Time 404 4 Time Structure
Node_Name 408 16 String
Site 424 128 String
Author 552 128 String
Comment 680 128 String
Data_Axis_Titles 808 256 32-Byte String per axis
Base_Freq 1064 64 Double per Axis
Zero_Point 1128 64 Double per Axis
Reversed 1192 8 1-Bit Boolean per axis
reserved 1200 3
Annotation_Ok 1203 1/8 1-Bit boolean
reserved 1203 7/8 rest of byte
History_Used 1204 4 Unsigned
History_Length 1208 4 Unsigned
Param_Start 1212 4 Unsigned
Param_Length 1216 4 Unsigned
List_Start 1220 32 4-Byte Unsigned per axis
List_Length 1252 32 4-Byte Unsigned per axis
Data_Start 1284 4 Unsigned
Data_Length 1288 8 Unsigned
Context_Start 1296 8 Unsigned
Context_Length 1304 4 Unsigned
Annote_Start 1308 8 Unsigned
Annote_Length 1316 4 Unsigned
Total_Size 1320 8 Unsigned
Unit_Location 1328 8 1-Byte Unsigned per axis
Extended_Units 1336 24 2 12-Byte Unit Structures

File_Identifier offset 0 size 8 type String
 This is used as a file type identifier.
 The possible values and their meanings:
 "JEOL.NMR" Normal Delta NMR file
 "RMN.LOEJ" File was not properly closed,
 data may be lost or inconsistent

Endian offset 8 size 1 type Enum
 The byte order of the Parameter, Data, Context, and Annotation sections.
 Does not apply to Header, History, or List sections, which are always
 big endian.
 0 = Big Endian
 1 = Little Endian

Major_Version offset 9 size 1 type Unsigned
 The major version number of this file format.
 This value must be 1.

Minor_Version offset 10 size 2 type Unsigned

 The minor version number of this file format.
 This value must be 2.

Data_Dimension_Number offset 12 size 1 type Unsigned
 The number of dimensions of data in this file.
 Valid range is 1 to 8.

Data_Dimension_Exist offset 13 size 1 type 1-Bit Boolean per axis
 An array of Booleans indicating which dimensions exist.
 bits 7 to 0 correspond to axes x, y, z, a, b, c, d, e
 NOTE: These do not refer to the physical layout of the file, only
 to the displayed layout. (i.e. if only bits 6,5 are set, this
 refers to a 2-D file displayed in the y and z dimensions, the
 files format may be greater that 2-D)

Data_Type offset 14 size 2/8 type Enum
 The data_type will most often be 0 (64Bits) for all data files.
 Newer systems may choose 1 (32Bits) for data areas larger than 0.5GB
 0 = 64Bit Float
 1 = 32Bit Float
 2 = Reserved
 3 = Reserved

Data_Format offset 14 size 6/8 type Enum
 The physical layout of data in the file. See Data Section below for
 information on what each of these means for the data layout.
 1 = One_D
 2 = Two_D
 3 = Three_D
 4 = Four_D
 5 = Five_D
 6 = Six_D
 7 = Seven_D
 8 = Eight_D
 9 - 11 are not for NMR data formats
 12 = Small_Two_D
 13 = Small_Three_D
 14 = Small_Four_D

Instrument offset 15 size 1 type Enum
 The type of instrument/software this data was originally obtained from.
 0 = NONE
 1 = GSX
 2 = ALPHA
 3 = ECLIPSE
 4 = MASS_SPEC
 5 = COMPILER
 6 = OTHER_NMR
 7 = UNKNOWN
 8 = GEMINI
 9 = UNITY
 10 = ASPECT
 11 = UX
 12 = FELIX
 13 = LAMBDA
 14 = GE_1280
 15 = GE_OMEGA

 16 = CHEMAGNETICS
 17 = CDFF
 18 = GALACTIC
 19 = TRIAD
 20 = GENERIC_NMR
 21 = GAMMA
 22 = JCAMP_DX
 23 = AMX
 24 = DMX
 25 = ECA
 26 = ALICE
 27 = NMR_PIPE
 28 = SIMPSON

Translate offset 16 size 8 type 1-Byte Unsigneds
 An array of 8 values that translates from the display dimensions in
 Data_Dimension_Exist to the internal dimensions of the file. (i.e.
 values of {3,1,2,4,5,6,7,8} means the axis displayed in X is stored
 in axis 3, the y axis is stored in axis 1, the z axis in axis 2).
 A raw unprocessed file should always have values of {1,2,3,4,5,6,7,8}
 Valid range for each element is 1 to 8.

IMPORTANT: All the following fields which are arrays of 8 elements refer
 to the internal layout of the axes NOT the displayed axes.
 Internal layouts always use contiguous dimensions starting with
 axis 1.

Data_Axis_Type offset 24 size 8 type 1-Byte Enum per axis
 An array of 8 enumerations. Each element indicates the type of data
 for that axis. These values interact with Data_Format to determine
 data layout in the Data Section.
 0 = None
 Axis is not used.
 1 = Real
 Axis has real data only, no imaginary.
 2 = TPPI
 3 = Complex
 Axis has complex data.
 4 = Real_Complex
 Axis should be accessed as complex when it is the major axis,
 accessed as real otherwise. This is only valid when all axes in
 use have this setting.
 5 = Envelope
 Behaves the same way as a Real_Complex dimension but the data
 has different meaning. Instead of being treated as real and
 imaginary parts of a complex number, the data should be treated
 as minimum and maximum parts of a projection. This is used
 for the data that results from an envelope projection.

Data_Units offset 32 size 16 type 2-Byte Unit per axis
 An array of 8 SI units. Each element is the SI unit to be applied to
 the ruler for that axis.
 The format of each unit:
 Prefix offset 0 bits 7..4 4-Bit Signed Enum
 The SI prefix.
 -8 = Yotta
 -7 = Zetta

 -6 = Exa
 -5 = Pecta
 -4 = Tera
 -3 = Giga
 -2 = Mega
 -1 = Kilo
 0 = None
 1 = Milli
 2 = Micro
 3 = Nano
 4 = Pico
 5 = Femto
 6 = Atto
 7 = Zepto

 Power offset 0 bits 3..0 4-Bit Integer
 The power of the unit. This is signed, so -1 is 1/unit. 0 is
 only valid if unit is None.

 Base offset 1 1-Byte Enum
 The SI base unit (with some extensions).
 0 = None
 1 = Abundance
 2 = Ampere
 3 = Candela
 4 = Celsius
 5 = Coulomb
 6 = Degree
 7 = Electronvolt
 8 = Farad
 9 = Sievert
 10 = Gram
 11 = Gray
 12 = Henry
 13 = Hertz
 14 = Kelvin
 15 = Joule
 16 = Liter
 17 = Lumen
 18 = Lux
 19 = Meter
 20 = Mole
 21 = Newton
 22 = Ohm
 23 = Pascal
 24 = Percent
 25 = Point
 26 = Ppm
 27 = Radian
 28 = Second
 29 = Siemens
 30 = Steradian
 31 = Tesla
 32 = Volt
 33 = Watt
 34 = Weber
 35 = Decibel

 36 = Dalton
 37 = Thompson
 38 = Ugeneric <-- Treated as None, but never displayed
 39 = LPercent <-- Treated as percent for display, but
different for comparison
 40 = PPT <-- Parts per trillion (Private, do not use)
 41 = PPB <-- Parts per billion (Private, do not use)
 42 = Index

Title offset 48 size 124 type String
 The title to be displayed. The string is null terminated except when
 all bytes are used. This is in UTF-8 encoding for newer files, but
 older files may contain ASCII.BEL encoding for non Latin characters.
 This is true for all Strings in the file.

Data_Axis_Ranged offset 172 size 4 type 4-Bit Enum per axis
 An array of 8 enumerations. Axis 1 is the high nibble of byte 0, axis
 2 is the low nibble of byte 0, etc.
 0 = Ranged
 The ruler for the axis ranges from Data_Axis_Start[n] to
 Data_Axis_Stop[n] with a step function of
 (Data_Axis_Stop[n] - Data_Axis_Start[n]) /
 (Data_Offset_Stop[n] - Data_Offset_Start[n])
 1 = Listed (deprecated)
 The ruler for the axis is a list of doubles stored in the
 List Section. Values in the ruler may be anything.
 2 = Sparse
 The ruler for the axis is a list of doubles stored in the
 List Section. Values in the rulers must be strictly monotonically
 increasing or decreasing.
 3 = Listed
 The ruler for the axis is a list of doubles stored in the
 List Section. Values in the rulers do not fit definition of Sparse.

Data_Points offset 176 size 32 type 4-Byte Unsigned per axis
 An array of 8 unsigned integers. Each element indicates how many data
 points are STORED for each axis. Some of this range may not be valid.
 Data_Offset_Start[n] and Data_Offset_Stop[n] indicate the valid range
 of data. A value of 1 indicates the axis is not used.
 Valid values for this depend on the Data_Format.
 e.g. if Data_Points[1] = 512 Data_Offset_Start[1] = 5
 Data_Offset_Stop[1] = 500, then one vector of data has
 512 data points but the first 5 points and last 11 points
 are not valid data.

Data_Offset_Start offset 208 size 32 type 4-Byte Unsigned per axis
 An array of 8 unsigned integers. Each element indicates the offset
 where valid data begins for that axis.
 The valid range is 0 to Data_Offset_Stop[n].

Data_Offset_Stop offset 240 size 32 type 4-Byte Unsigned per axis
 An array of 8 unsigned integers. Each element indicates the offset
 where valid data ends for that axis.
 The valid range is Data_Offset_Start[n] to Data_points[n] - 1.

Data_Axis_Start offset 272 size 64 type Double per axis
 An array of 8 doubles. Each element is the first value of the

 ruler (corresponding to Data_Offset_Start[n]).

Data_Axis_Stop offset 336 size 64 type Double per axis
 An array of 8 doubles. Each element is the last value of the
 ruler (corresponding to Data_Offset_Stop[n]).

Creation_Time offset 400 size 4 type Time Structure
 The creation time of the original data file.
 Uses JEOL universal time format.
 The Time Structure contains:

 Year offset 0 bits 31..25 7-Bit Unsigned
 The Year is offset by 1990 (value 0 is the year 1990).

 Month offset 0 bits 24..21 4-Bit Unsigned
 Month is 1 to 12.

 Day offset 0 bits 20..16 5-Bit Unsigned
 Day is 1 to 31.

 Day_Fraction offset 2 2-Byte Unsigned
 Day Fraction is the 1/65535 part of the day. Multiply this value by
 86400/65535 (=1.318379) to get seconds since midnight.

 NOTE: Because the fields do not fall on byte boundaries, you can not
 just swap the bytes to read this on a Little Endian machine.

Revision_Time offset 404 size 4 type Time Structure
 The time of last change to the data portion of the file.
 Uses JEOL universal time format (see description in Creation_Time).

Node_Name offset 408 size 16 type String
 The name of the computer on which the file was collected / converted.
 The string is null terminated except when all bytes are used.

Site offset 424 size 128 type String
 The physical site where the file was collected / converted. The string
 is null terminated except when all bytes are used.

Author offset 552 size 128 type String
 The author / owner of the file. The string is null terminated except
 when all bytes are used.

Comment offset 680 size 128 type String
 The comment to be display. The string is null terminated except when
 all bytes are used.

Data_Axis_Titles offset 808 size 256 type 32-Byte String per axis
 An array of 8 32-Byte strings. Each element is the title to be
 displayed for that axis. The string is null terminated except when
 all bytes are used.

Base_Freq offset 1064 size 64 type Double per axis
 An array of 8 doubles. Each element is the base spectrometer frequency
 for that axis in Megahertz. This value is used for hertz <--> ppm unit
 conversion.

Zero_Point offset 1128 size 64 type Double per axis
 An array of 8 doubles. Each element stores the location of 0 on the
 ruler when in hertz. It is stored as a fraction of the total vector
 length with a bias of 0.5. i.e. A value of 0 means that ruler value 0
 is exactly halfway between the endpoints, a value of -0.5 means that
 ruler value 0 is exactly on the first data point.

Reversed offset 1192 size 8 type 1-Bit Boolean per axis
 An array 8 booleans. Each element indicates whether the data was
 collected in a reverse method (True = NType, False = PType). This
 should only ever be set on data which has not been Fourier transformed.

Annotation_Ok offset 1203 size 1/8 type 1-Bit Boolean
 True if the annotation database has been verified.

History_Used offset 1204 size 4 type Unsigned
 The length of the History Section (the amount of space
 that is actually used).
 The History Section starts immediately following the Header at
 offset 1360.

History_Length offset 1208 size 4 type Unsigned
 Total amount of space allocated for the History Section.
 The History Section starts immediately following the Header at
 offset 1360.

Param_Start offset 1212 size 4 type Unsigned
 The offset from the beginning of the file where the Parameter Section
 is stored.

Param_Length offset 1216 size 4 type Unsigned
 The length of the Parameter Section.
 The value is 0 if no Parameter Section is present.

List_Start offset 1220 size 32 type 4-Byte Unsigned per axis
 An array of 8 unsigned integers. Each element is the offset from the
 beginning of the file where the ruler list for that axis is stored
 (if it exists). The list is an array of doubles which must have the
 same number of elements as Data_Points[n]. Data_Offset_Start[n] and
 Data_Offset_Stop[n] apply just as they do for a data vector.

List_Length offset 1252 size 32 type 4-Byte Unsigned per axis
 An array of 8 unsigned integers. Each element is the length in bytes
 of the ruler list for that axis. This value should either be 0 if no
 list is present, or 8 * Data_Points[n].

Data_Start offset 1284 size 4 type Unsigned
 The offset from the beginning of the file where the Data Section
 is stored.

Data_Length offset 1288 size 8 type Unsigned
 The length of the Data Section.
 The value is 0 if no Data Section is present.

Context_Start offset 1296 size 8 type Unsigned
 The offset from the beginning of the file where the Context Section

 is stored.

Context_Length offset 1304 size 4 type Unsigned
 The length of the Context Section.
 The value is 0 if no Context Section is present.

Annote_Start offset 1308 size 8 type Unsigned
 The offset from the beginning of the file where the Annotation Section
 is stored.

Annote_Length offset 1316 size 4 type Unsigned
 The length of the Annotation Section.
 The value is 0 if no Annotation Section is present.

Total_Size offset 1320 size 8 type Unsigned
 The total length of the file.
 This value must be less than or equal to the actual length of the file.

Unit_Location offset 1328 size 8 type 1-Byte Unsigned per axis
 An array of 8 values, one for each axis. If non-zero indicates which of
 the 2 Compound_Units to use for this axis. Only 2 axes can have
 compound units.

Compound_Units offset 1336 size 24 type 12-Byte Compound Unit
Structure
 An array of 2 12-byte unit structures.
 Each Compound Unit consists of:

 Unit_Scaler offset 0 size 2 Integer
 The units are multiplied by 10**Unit_Scaler if this value is not 0.
 i.e. Megahertz can be stored as either unit:megahertz,scaler:0 or
 as unit:hertz,scaler:6. Whenever possible this value should be 0.

 Units offset 4 size 10 5 2-Byte Unit Structures
 An array of 5 Structures. Each element is a Unit structure. See
 header field Data_Unit for the definition of this structure. There
 are 5 of these so that compound units may be expressed.

Parameter Section

The Parameter Section starts at the offset specified by the Parameter_Start
header field. The Parameter Section contains the settings of the
spectrometer and the experiment that were used to collect the data.
This section is optional.

There is a small header on this section which consists of these fields.
The offset is relative to the start of the Parameter Section.

Field Name Offset Size Type
------------ ------ ---- ----
Parameter_Size 0 4 Unsigned
Low_Index 4 4 Unsigned
High_Index 8 4 Unsigned
Total_Size 12 4 Unsigned

Parameter_Size offset 0 size 4 type Unsigned
 The size in bytes of one parameter.
 The value should be 64.

Low_Index offset 4 size 4 type Unsigned
 The low array index.
 The value should be 0.

High_Index offset 8 size 4 type Unsigned
 The high array index. The number of parameters is High_Index + 1.

Total_Size offset 12 size 4 type Unsigned
 The total size of all parameters, not including this header.
 The value should be (High_Index + 1) * 64

Immediately following the parameter header at offset 16 is an array of
parameters.

Each parameter consists of these fields. The offset is relative to the
start of each parameter.

Field Name Offset Size Type
---------- ------ ---- ----
Class 0 4 Class Structure
Unit_Scaler 4 2 Integer
Units 6 10 5 2-Byte Unit Structures
Value 16 16 Union
Value_Type 32 4 Enumeration
Name 36 28 String

Class offset 0 size 4 type Class Structure
 This is an internal structure used for spectrometer control. Not
 documented here.

Unit_Scaler offset 4 size 2 type Integer
 The units are multiplied by 10**Unit_Scaler if this value is not 0.
 i.e. Megahertz can be stored as either unit:megahertz,scaler:0 or
 as unit:hertz,scaler:6. Whenever possible this value should be 0.

Units offset 6 size 10 type 5 2-Byte Unit Structures
 An array of 5 Structures. Each element is a Unit structure. See
 header field Data_Unit for the definition of this structure. There
 are 5 of these so that compound units may be expressed.

Value offset 16 size 16 type Union
 The type of this field and the exact size depends on the value of
 Value_Type. These are the definitions for each Value_Type value.
 The byte order of the value is determined by the Endian header field.
 String
 A 16-Byte string which is padded with spaces.
 Integer
 A 4-Byte integer.
 Float
 An 8-Byte double.
 Complex
 2 8-Byte doubles, the real value first (offset 16) followed by the

 imaginary value (offset 24).
 Infinity
 A 4-Byte enumeration.
 1 = Negative_Infinity
 2 = Minus_One
 3 = Zero
 4 = Positive_One
 5 = Positive_Infinity

Value_Type offset 32 size 4 type Enumeration
 0 = String
 1 = Integer
 2 = Float
 3 = Complex
 4 = Infinity

Name offset 36 size 28 type String
 This is the parameter name. The strings are padded with spaces to the
 full length.

There is an optional extended parameter store in the context section which
encodes
name value pairs in a streaming format.

Data Section

The exact format of the Data Section is determined by both the Data_Format
and Data_Axis_Type header fields. All data is stored as doubles with the
Endian header field determining the byte order.

This section is divided into multiple sections, one for each double of a
(hyper)complex value. The number of sections is therefore determined by
the Data_Axis_Type header field.

In general the number of sections is 2**number_of_complex_dims.

The length of each section is simply all the Data_Points multiplied together
times 8 bytes.

The format of each section is determined by the Data_Format header field.
In specific the format is described as a row major order nD array of
row major order nD arrays of doubles. Each format has a fixed size submatrix
of doubles, with the number of those submatrices determined by the number of
Data_Points. As a result Data_Points[n] must be a multiple of the edge
length of that format's specific submatrix.

The submatrix size for each format is given below.

Data_Format Submatrix Edge Total Submatrix Points
------------- -------------- ----------------------
One_D 8 8 (8**1)
Two_D 32 1024 (32**2)
Three_D 8 512 (8**3)
Four_D 8 4096 (8**4)
Five_D 4 1024 (4**5)

Six_D 4 4096 (4**6)
Seven_D 2 128 (2**7)
Eight_D 2 256 (2**8)
Small_Two_D 4 16 (4**2)
Small_Three_D 4 64 (4**3)
Small_Four_D 4 256 (4**4)

Examples:
 1D Real, 512 points
 Data_Axis_Type[1..8] = [Real,None,None,None,None,None,None,None]
 number of sections : 1
 section format : vector of 512 doubles

 1D Complex, 512 points
 Data_Axis_Type[1..8] = [Complex,None,None,None,None,None,None,None]
 number of sections : 2 (Real, Imaginary)
 section format : vector of 512 doubles

 2D Real, 256 x 64 points
 Data_Points[1..8] = [256,64,1,1,1,1,1,1]
 Data_Axis_Type[1..8] = [Real,Real,None,None,None,None,None,None]
 Data_Format = Two_D
 number of sections : 1
 section format : 16 total submatrices laid out 8 x 2
 each submatrix is 32 x 32 doubles

 2D Complex, 512 x 128 points
 Data_Points[1..8] = [512,128,1,1,1,1,1,1]
 Data_Axis_Type[1..8] =
[Real_Complex,Real_Complex,None,None,None,None,None,None]
 Data_Format = Two_D
 number of sections : 2 (Real, Imaginary)
 section format : 64 total submatrices laid out 16 x 4
 each submatrix is 32 x 32 doubles

 2D Hyper Complex, 256 x 16 points
 Data_Points[1..8] = [256,16,1,1,1,1,1,1]
 Data_Axis_Type[1..8] = [Complex,Complex,None,None,None,None,None,None]
 Data_Format = Small_Two_D
 number of sections : 4 (RealReal, RealImag, ImagReal, ImagImag)
 section format : 256 total submatrices laid out 64 x 4
 each submatrix is 4 x 4 doubles

 3D Hyper Complex, 128 x 64 x 8 points
 Data_Points[1..8] = [128,64,8,1,1,1,1,1]
 Data_Axis_Type[1..8] = [Complex,Complex,Complex,None,None,None,None,None]
 Data_Format = Three_D
 number of sections : 8 (RRR, RRI, RIR, RII, IRR, IRI, IIR, III)
 section format : 256 total submatrices laid out 16 x 8 x 1
 each submatrix is 8 x 8 x 8 doubles

This example shows how the Data_Offset fields work with the others.

 2D Hyper Complex, 500 x 100 points
 Data_Points[1..8] = [512,128,1,1,1,1,1,1]
 Data_Offset_Start[1..8] = [0,0,0,0,0,0,0,0]
 Data_Offset_Stop[1..8] = [499,99,0,0,0,0,0,0]

 Data_Axis_Type[1..8] = [Complex,Complex,None,None,None,None,None,None]
 Data_Format = Two_D
 number of sections : 4 (RealReal, RealImag, ImagReal, ImagImag)
 section format : 256 total submatrices laid out 64 x 4
 each submatrix is 32 x 32 doubles

Retrieval of data using this scheme is probably best shown with example code.
Here is the generalized routine for finding a particular data point's offset.

struct File_Info
{
 ...
 uchar translate[8];
 uint offset_start[8];
 uint offset_stop[8];
 uint submatrices[8]; /* number of submatrices along each dim */
 uint submatrix_edge; /* length of an edge of submatrix */
 unit submatrix_size; /* number of points in submatrix */
 ...
};

/*
 Given a file and a position, where position[i] is in the range
 0 to (file_info.offset_stop[i] - file_info.offset_start[i])
 return the offset of that position from the beginning of each data
 subsection.
*/
uint file_offset(struct File_Info file_info, uint position[])
{
 uint i, pos[8], posi;
 uint sub_off = 0; /* accumulates submatrix offset */
 uint pnt_off = 0; /* accumulates point offset within submatrix */

 /* translate to internal dimensions */
 for (i = 0; i < 8; i++)
 pos[file_info.translate[i]] = position[i];

 for (i = 7; i >= 1; i--)
 {
 posi = pos[i] + file_info.offset_start[i];
 pnt_off = (pnt_off + posi % file_info.submatrix_edge) *
file_info.submatrix_edge;
 sub_off = (sub_off + posi / file_info.submatrix_edge) *
file_info.submatrices[i-1];
 }
 posi = pos[0] + file_info.offset_start[0];
 pnt_off = pnt_off + posi % file_info.submatrix_edge;
 sub_off = sub_off + posi / file_info.submatrix_edge;
 return sizeof (double) * (sub_off * file_info.submatrix_size + pnt_off);}

Digital Filter Phase Correction Information

  





  






2

1

2

1

2

1

1

1

1

1 
orders

i
orders

ij
j

i

factors

orders

Orders and factors are lists of space separated integers. So to process
digitally filtered data you have to Fourier transform it, apply the above
phase, then inverse transform it. The data will then look like a normal FID,
with the data decreasing in magnitude from the first point, but there will be
an increasing portion of the data near the end of the FID. This region
actually corresponds to data at a negative time and care has to be taken when
zero filling or applying window functions to treat it properly or artifacts
will appear in the spectrum. For example to zero fill the data, the phase
shift from the digital filters first has to be reapplied, then the zero
filling, and then the phase shift has to be undone.

There is another parameter called digital_filter_status in the data, if it
contains a capital P then the phase shift has already been applied to the
spectrum and the delayed points are at the end of the FID, a small p
indicates that the delay is at the beginning of the FID. You will have to
pay attention to this parameter to determine what adjustments are necessary
to processing.

