

¹⁴N decoupled ¹H−¹⁹F HOESY with ROYALPROBE™ HFX

Product used: Nuclear Magnetic Resonance (NMR)

Fluorine and nitrogen containing organic compounds are often found in a variety of fields such as pharmaceutical and material sciences. Such compounds show unique properties based on their conformations and orientations, which are often induced by hydrogen bonds between N-H and F atoms. Therefore, analysis of molecular conformations and inter-molecular interactions are important. Here, we report ¹⁴N decoupled ¹H–¹⁹F HOESY (hetero nuclear NOE) for fluorinated benzanilide (1) as a demonstration.

fluorinated benzanilide (1)

Measurements of ¹⁴N decoupling ¹H-¹⁹F HOESY

It often happens that ¹H NMR analysis is prevented with the severe line broadening of ¹H signal that is bound to ¹⁴N atom. In such a case, the ¹⁴N decoupling technique is useful. ¹H–¹⁹F 1D-HOESY spectra *with* and *without* ¹⁴N decoupling are shown in Fig.1. Selective excitation was done at F5 (Fig.1: upper) and F6 (Fig.1: bottom), respectively. The amide ¹H signal intensity in 1D-HOESY is increased by twice, compared to that measured without ¹⁴N decoupling. Since NOE measurements have generally difficulty in low sensitivity, the ¹⁴N decoupling technique is useful for observation of cross peaks with ¹H–¹⁴N signals. 2D-HOESY with ¹⁴N decoupling measurement is

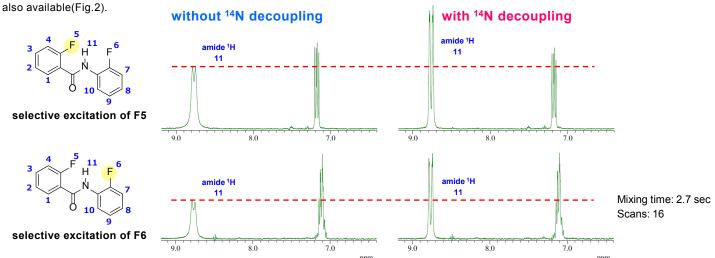


Fig.1 Comparison of amide ¹H signal intensities in 1D-HOESY spectra *with* or *without* ¹⁴N decoupling (upper: selective excitation at F5; bottom: F6).

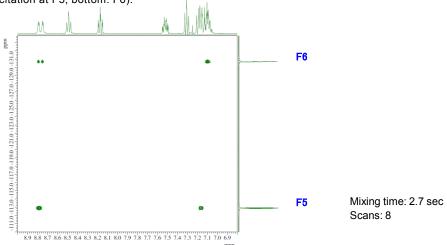


Fig.2 2D-HOESY spectrum of 1 under the ¹⁴N decoupling condition.

Sample: 36 mg fluorinated benzanilide in chloroform-d Equipment: JNM-ECZ400S with ROYALPROBETM HFX**

※Special modification for ¹⁴N nuclei required.

References

G. N. Manjunatha Reddy, M. V. Vasantha Kumar, T. N. Guru Row, N. Suryaprakash, *Phys. Chem. Chem. Phys.*, **12**, 13232–13237 (2010). L. E. Combettes, P. Clausen-Thue, M. A. King, B. Odell, A. L. Thompson, V. Gouverneur, T. D. W. Claridge, *Chem. Eur. J.*, **18**, 13133–13141 (2012).

Copyright © 2019 JEOL Ltd.

Certain products in this brochure are controlled under the "Foreign Exchange and Foreign Trade Law" of Japan in compliance with international security export control. JEOL Ltd. must provide the Japanese Government with "End-user's States of Assurance" and "End-use Certificate" in order to obtain the export license needed for export from Japan. If the product to be exported is in this category, the end user will be asked to fill in these certificate forms.

