

Poking fun at helpless Atoms –

Towards Consistency by a cut and paste solution with Delta Pulse Programming.

Early Lesson 1 – you get what you ask for...

- Phase = {0, 2, 1, 3}; will get you zero, two, one and three degrees!
- Rather..
- Phase = $\{0, 180, 90, 270\};$

• Very handy for times when phases of 30, 45, 60, 135 might be desired. *Delta is a decidedly modern approach to such things.*

Delay and pulse Events – *consistency*!

time; ... simple delay of duration in variable time..

time, (options); ... an event of duration "time" with device defined in options..

x_pulse,(obs.gate, obs.phs.phase_x, obs.atn.x_atn); ... simple obs channel pulse

grad_1,(fgz.gate,fgz.amp.grad_1_amp,fgz.shape.grad_shape); ... Z-PFG
pulse..

T/2 - (tau - epsilon) - y_pulse - tau - t1 ystep -1/(2*y_sweep), (irr.gate.irr.rf_mod.irr_noise, irr.atn.irr_atn_dec);

gHSQCAD & HSQCAD Edit Options -> Easy custom

multiplicity_edit_mode => "up_down" , ("up_down", "off", "CH_only");

JEOL

Core experiment #2..

SAMI

Vague "up/down" information but higher resolution

gHMBCAD av in F2 / phased F1

LR-HSQMBC with PSYCHE 1D as projection Phased both F1/F2 JEO {13C}

Asking around.. H2BC – under utilized! Why? Lasalocid-A example

Constant-time experiment Compliments simple COSY..!

CROPROBES

N. T. Nyberg, J. O. Duus, O. W. Sorensen, JACS, 127, 6154-6155, 2005.
N. T. Nyberg, J. O. Duus, O. W. Sorensen, Mag Res Chem 43, 971-974, 2005.

JED

Experiment to Probe edited 1Jcc and nJcc while observing 1H

Journal of Magnetic Resonance 236 (2013) 126-133

Contents lists available at ScienceDirect

Journal of Magnetic Resonance

CrossMark

journal homepage: www.elsevier.com/locate/jmr

Broadband inversion of ${}^{1}J_{CC}$ responses in 1,*n*-ADEQUATE spectra *

Mikhail Reibarkh^{a,*}, R. Thomas Williamson^a, Gary E. Martin^{b,*}, Wolfgang Bermel^c

^aMerck Research Laboratories, Discovery and Preclinical Sciences, Process and Analytical Chemistry, Structure Elucidation Group, Rahway, NJ 07065, USA ^bMerck Research Laboratories, Discovery and Preclinical Sciences, Process and Analytical Chemistry, Structure Elucidation Group, Summit, NJ 07901, USA ^c BrukerBioSpin GmbH, Siberstreifen, 70287 Rheinstetten, Germany (1) 1,1-ADEQUATE: $f(J) = \sin^2(J * \pi * \Delta).$ Δ is usually optimized to match J of ~40–60 Hz.

(2) 1,n-ADEQUATE: $f(J) = \sin^2(J * \pi * \Delta).$ Δ is usually optimized to match J of ~5–7 Hz.

(3) Single-optimization ${}^{1}J_{cc}$ -edited 1,n-ADEQUATE: $f(J) = \sin(J * \pi * ((2 * m + 1)/(2 * {}^{1}J_{opt}) + \delta)) * \sin(J * \pi * ((2 * m - 1)/(2 * {}^{1}J_{opt}) + \delta)).$

Here, *m* is the truncated integer of ${}^{1}J_{opt}/(2 * {}^{n}J_{opt})$. ${}^{1}J_{opt}$ and ${}^{n}J_{opt}$ are the optimization values for ${}^{1}J_{CC}$ and ${}^{n}J_{CG}$ respectively. δ Is the sum of all additional delays in the pulse sequence (primarily due to the length of shaped pulses).

 $\begin{array}{l} (4) \ Dual \ optimization \ ^1 J_{cc} -edited \ 1,n-ADEQUATE: \\ f(J) = 0.5 * [\sin(J * \pi * ((2 * m_A + 1)/(2 * ^1 J_A) + \delta)) * \\ \sin(J * \pi * ((2 * m_A - 1)/(2 * ^1 J_A) + \delta)) + \\ \sin(J * \pi * ((2 * m_B + 1)/(2 * ^1 J_B) + \delta)) * \\ \sin(J * \pi * ((2 * m_B - 1)/(2 * ^1 J_B) + \delta))]. \end{array}$

nJ1J edited adequate has poor sensitivity *but* With dual optimization the sensitivity is *greatly* improved! *1-1-Adequate clearly defines 1JCC connectivities N-J-Adequate adds long-range connectivities*

SAMPLE PREP • MICROPROBES • NMR • MASS

Fig. 2. Calculated amplitude transfer curves governing the response intensity of an inverted ${}^{1}J_{CC}$ 1,*n*-ADEQUATE experiment modified for dual optimization of the carbon–carbon delays (blue). The two optimizations were ${}^{1}J_{CC}$ = 57 with ${}^{n}J_{CC}$ = 9.5 Hz (red), and ${}^{1}J_{CC}$ = 64 with ${}^{n}J_{CC}$ = 8 Hz (green). (A) This panel shows the response intensity of the ${}^{1}J_{CC}$ correlations as a function of the optimization. The blue trace shows the calculated, summed, and normalized response intensity across the optimization range from 30 to 90 Hz. One-bond correlations are inverted across the range from 29 to 82 Hz, which encompasses most commonly encountered one-bond carbon–carbon [34,35].(B) This panel shows the response intensity for the ${}^{n}J_{CC}$ correlations as a function of the optimization response intensity of the optimization across the range from 0 to 16 Hz. The blue trace shows the summed and normalized long-range carbon–carbon response intensity. This dual optimization pair gives usable response intensity (>0.5) across the range from approximately 4 to 12 Hz, which encompasses most structurally useful ${}^{n}J_{CC}$ in the authors' experience [20].

From J. Magn. Reson. 236 (2013) 126-133

Dual-optimization greatly improves the 1-1 and the N-J receptivity. I simply cut/pasted the delay declarations from Bruker code and retained those variable names to avoid any possibility of confusion!

NJ CC

1JnJ-edited ADEQUATE with Dual 1/NJcc optimization

(time to shamelessly steal some slides).

Dr. Adolfo Botana has done some interesting cut/paste activities..

Multi-2D data sets from single acquisition.. NOAH

NOAH all 3 core experiments at once

PRE

Ч

3 datasets or more from 1 experiment

Can easily be acquired by a Chemist with no NMR skills. In automation 3 3Ds are returned with no action required.

Ē. Kupče, T. D. W. Claridge, Angew. Chem. Int. Ed. 2017, 56, 11779.

NOAH + NUS on hexenyl cinnamate

NOAH+ASAP

Ē. Kupče, T. D. W. Claridge, Chem. Commun., 2018, 54, 7139-7142

NOAH + ASAP + NUS

JEOL ROYAL Probe (transition to HFX..)

JEC

How to tune H, F and X nuclei?

17

SAMPLE PREP

EΜ

JEOL ROYAL HFX Probe

Smart Autotuning! The software automatically tunes in the most sensitive way

Using an inductive coupling coil technique, it achieves a double tuning for 1H and 19F without loss of sensitivity - plus bias towards 1H or 19F easily done.

HFX mode - Coupled

JEOL ROYAL HFX Probe

Λ

This configuration provides independent H/F receivers for a total of 3 receivers in this example.

Multi receiver

ECZ spectrometer can have more than two receivers and control each one independently – *extremely simple to program*.

HFX experiments

HFX in a 2 channel system?

Slide stolen from Peter Grice, University of Cambridge. UKMRM meeting 20/6/2018

ONE DOES NOT SIMPLY

DECOUPLE THE FULL RANGE OF 19F SIGNALS

https://u-of-o-nmr-facility.blogspot.com/2018/06/thelimitations-of-19-f-garp-decoupling.html?m=1

The picture, I lifted off Twitter, got me a hmmm and beard scratch from Pete Gierth

(slide now "twice stolen")

HFX with only 2 channels!

JEC

The maximum offset range of RF module is 50MHz, that covers both 1H and 19F. A standard 2ch ECZ can run 13C- $\{1H\}\{19F\}$ experiments with a HFX probe

SAMPLE PREP

EM

Easy multiple decoupling setup

	irr_decoupling	
irr_noe		
irr_decoupling		
irr_domain	Proton	\$
irr_noise	WALTZ	•
irr_atn_noe	26.9[dB] [irratn_lo	
irr_offset	5[ppm] irr_offset_default	
	tri_decoupling	
ri_noe		
ri_decoupling		
ri_domain	Fluorine19	
ri_noise	WURST_40	\$
ri_atn_noe	26[dB] triatn_lo	
ri_offset	-200[ppm]	
	qua_decoupling	
ua_noe	0	
ua_decoupling		
ua_domain	Fluorine19	
ua_noise	GARP	
ua_atn_noe	26[dB] quaatn_lo	
ua_offset	-50[ppm]	

JEO

Just choose, nuclei, offsets and decoupling schemes.

No need to recalculate pulses – (these few lines of experiment code easily copied)

25

13C (Hexafluoro propyl ethyl ether)

Decoupling 19F and/or 1H in HFX – 2D.

- Must keep single quantum or multiple quantum in mind.
- BIP shape our easy choice for evolution decoupling 180

SAM

• In 2D HFX, decoupling 19F or 1H much more important in F1 than F2 to resolve chemical questions.

LECTRON MICROSCOPES • SEM • ESR • E-BEAM • TEM • SA

SQ – 19F J's refocused in INEPT period

MQ – No INEPT refocusing so 19F 180 inverts 1H!

SPE

MICROPROBES

EM

Phase-sensitive gHMQC with 19F decoupling Using sequencers and multiple-bands. 2-CH ECZ400S

ELECTRON MICROSCOPES • SEM • ESR • E-BEAM •

2D Viewer : F_PyrMixture_gHMBCAD_NoFDecNus-1-2.jdf - 0 × File Options Reports Project Slicing Expansion Process View Analyze Tools Actions Layout 🚰 🔖 🖫 🗃 🖶 😂 👣 😣 🕽 2 🌐 👸 📑 B-project Y lare 0.0 3611 0 120.0 30.0 8.5 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 0 2.0 4.0 6.0 8.0 1 X : parts per Million : 1H (thousandths) Reference X \$ 0.0 0 👔 Integral Normal 🕴 🛊 qNMR

Decoupling 19F in F1-only answers *Chemical* question.. 2 *CH console with HFX Royal*!

No setup required.

ELECTRON MICROSCOPES • SEM • ESR • E-BEAM • _____TEM • S

LRHSQMBC – With and without {19F} in evolution

Better linewidth and resolution than gHMBCAD. {13C}

ECZ400S – Again. 19F decoupling in <u>evolution</u> <u>only</u> answers the *chemical* question!

19F Filtered Mixtures

A modification of SRI-FESTA experiment for broadband use.

SRI-FESTA Experiment

- <u>http://dx.doi.org/10.1021/acs.analchem.8b00753</u>
- {Laura Castanar et al.}
- SRI-FESTA uses a selective 19F -> 1H Polarization transfer followed by a selective labelling of a single 1H. F-H Inept only selected by menu.
- The experiment finishes with a TOCSY transfer to reveal all the protons which are coupled to the selected 1H revealed by the 19F transfer.
- Powerful and highly selective method but it required knowledge to choose the selective excitation points for both 19F and 1H.

Selective pulses required: Both 19F and 1H

Because there are highly selective 180 degree pulses flanked by pulse-field gradients there is a "perfect echo" leading to a very clean result.

SRI-FESTA was more about structure fragments than screening per-se.

Broadband Modification

- Replace all selective pulses with the complete opposite idea highly broadband pulses.
- This will give a very messy result because of the loss of the perfect echos.
- The phase cycle can be modified to select the desired pathway resulting in an experiment which effectively reveals the 19F filtered 1H TOCSY on complex mixture without requirement of the spectroscopist to first identify and then choose sites for band-selection.

Dealing with Overlap in 1-Dimension

ELECTRON MICROSCOPES • SEM • ESR • E-BEAM • TEM • SAMPLE PROP

Chemical Shift Filter. Almost forgotten exp!

- The concept of Chemical shift filtering can be used to greatly enhance selectivity in DPFGSE NOESY or TOCSY.
- CSSF Reference P.T. Robinson, T. Nghai Pham and D. Uhrin, JMR, Vol. 179. p. 97-103 (2004).
- Application with DPFGSE 1D Spectroscopy Sara J. Duncan, Richard Lewis, Michael A. Bernstein, Peter Sandor . Magn. Reson. Chem. Vol 45, Issue 4 p 283-288 (2007).

Principals

- Do a 1D NOESY or TOCSY with a chemical shift filter between the DPFGSE pair of selective pulses. A very low number of t1 increments is used .. ~12.
- Transmitter position must remain exactly at position of desired selection throughout experiment. (*PSYCHE!*)
- Shifted-laminar selective pulses cannot be used.
- With constant time option best result is obtained.
- Result is processed simply by summing all of the fids as a 1D experiment.

ELECTRON MICROSCOPES • SEM • ESR • E-BEAM • TEM

Example result for 2 different CH3's in Lasalocid

Processing list to simply sum all pseudo 2D fids. Provided as "CSSF_Proc.list".

JEC

resolution...What is CRAFT? CRAFT for Practica Applications

imple mixture of APIs

5

*d*1H/ ppm JEOL

CRAFT for 2D data
 processing

CRAFT for 2D data processing

In the 2D CRAFT[1], frequency, amplitude, phase, decay rate of interferogram are estimated.

Y resolution is no longer limited by acquisition time of an interferogram.

2D Craft – use the available resolution

So what about resolution in simple 1D?

JEO

SPE

MICROPROBES

SAMPLE

EM

Pureshift Additions

Hiroaki Utsumi has been very busy!

Measurement example requiring Flatten : Pure shift NMR

SPE

Pure shift NMR: menthol

Unprocessed data is a two-dimensional format in which FIDs are aligned in the Y-axis direction, but is combined with one-dimensional FID by Flatten.

Pure shift sequence name (1) of DeltaV5.31

Sequence name	paper	1 D/2D	commnet		
Pureshift_1d_PSYCHE	2014	1D	Good		
Pureshift_1d_ZS	?	1D	original		
Pureshift_1d_ZSsl	?	1D	original		
Pureshift_1d_PEPSIE	2018	1D	Good /New ZS?		
Pureshift_1d_TSE_PSYCHE	2015	1D	Good /		
Pureshift_1dacq_hobs	2013	1D real time	Band selective		
Pureshift_1dacq_ZS	2015	1D real time	Real time		
pureshift_1d_TOCSY_PSYCHE	2016	1D			
pureshift_1d_NOESY_PSYCHE		1D	Bad SNR		
pureshift_1d_ROESY_PSYCHE		1D	Bad SNR		
pureshift_2d_bppste_dosy_psyche	2010	2D	PSYCHE xchane		
Pureshift 2d f1 toesv psyche	2014	ח2	covariance		
Process list	Comm	Commnet			
Pureshift_1d	Puresh	Pureshift 1d process list			
Pureshidt 2d homo 2d phase					

EOL

Sequence name & process list (2) of Delta V5.31

Sequence	pape r	1D/ 2d	Pureshift	
Pureshift_1d_edit_cpmg_hsqc	2015		2D type / Bird pulse	
Pureshift_1dacq_edit_cpmg_hsqc	2013		Real time/ Bird pulse	
Pureshift 2d_edit_cpmg_hsqc_pn	2015		3D type/ Bird pulse	
D	0010		D 1 4	
Process list	Comment			
Pureshift_2d_inverse_pn_A.list]	Real time	hsq	c pureshift	
Pureshift_2d_inverse_pn_Z.list	3D type hsqc pureshift			
Cpmg_hsqmbc_pn			Normal sequence	
			JEC	

SPE

2D TOCSY reference example..

Pureshift_2d_f1_psyche_tocsy nus100%

Pureshift_2d_f1_psyche_tocsy nus100%+covaricance

SPE

Final example – an old favorite..before "ipap"

NMR Spectroscopy

PSYCHE CPMG-HSQMBC: An NMR Spectroscopic Method for Precise and Simple Measurement of Long-Range Heteronuclear Coupling Constants

István Timári,^[a] László Szilágyi,^[b] and Katalin E. Kövér^{*[a]}

Figure 1. Pulse sequence of the PSYCHE CPMG-HSQMBC experiment proposed for the measurement of long-range heteronuclear coupling constants. Narrow and wide filled bars correspond to 90° and 180° pulses respectively, with phase x unless indicated otherwise. Low flip angle (β), frequency-swept Chirp pulses are shown as trapezoids with diagonal arrows. To improve the sensitivity of the experiment, Chirp pulses which sweep frequency in opposite directions can be used simultaneously, as indicated by the dotted arrows. ϕ_1 is incremented according to XY-16 cycles within the CPMG sequence, thus n should ideally be adjusted to a multiple of 16. Other phases are $\phi_2 = y$; $\phi_3 = x$, -x; $\phi_4 = x$, x, -x, -x; $\phi_5 = x$, x, x, y, y, y, y; and $\phi_{rec} = x$, $-x_1$, $-x_2$, x_1 , $-x_2$, x_3 , $-x_4$. Delays are set as follows: $\tau = 140-150 \mu s_1$, $\tau_2 = 1/2$ (4-sw2). Coherence order selection and echo-antiecho phase sensitive detection in the x dimension are achieved with gradient pulses (G₂ and G₄) in the ratio 80:20.1 for ¹³C and 80:15.257 for ⁷⁷Se, respectively, Purging gradient pulses (G1 and G3) are set to 19%, 11% of maximum gradient strength (50 G cm⁻¹). Coherence selection gradient pulses (G_s and G_s) used in the extra PSYCHE dimension have 49% and 77%. Sine-bell-shaped gradient pulses of 1 ms duration are utilized, followed by a recovery delay of 200 µs (G1-G4) and 1000 µs (G5, G6). Weak magnetic field gradient (G7) used under the Chirp pulses is adjusted for 1.8% of maximum gradient strength.

Chem. Eur. J. 2015, 21, 1-5

Not real time 3D type

Update from the observatory

Supernova remnant from 1054 event. Still expanding!

Many thanks!!

- Thanks to JEOL for helping me learn and play.
- Tim, ET, Ashok, Komatsu san, Mike, Toby. Many more..
- Special thanks to Dave Russell for coming up with ideas to try!
- Thank you all for coming today!!

