

NMR Training Course

9th September 2021 Adolfo Botana, PhD JEOL UK Demo Lab

Power handling liquids probes

Power handling

- Probes can get damaged if they receive more RF than they can handle, this damage may extend to other elements in the spectrometer
- Clearly exceeding safe RF power levels will trigger an alarm in the RF amplifiers, but RF amplifiers can typically handle more power than the probes, so RF power levels below this limit may still damage the probe
- There is an absolute limit of maximum power that probes can tolerate at each frequency. RF irradiation beyond this level will likely damage the probe
- At lower power levels it is possible to irradiate longer. See following tables to evaluate how long can RF irradiation be at different power levels
- Do not exceed the maximum irradiation time at each attenuation level
- In Delta a larger attenuation number [dB] results in lower RF power
- Maximum irradiation at Square pulse power is 1[ms] for HF and 0.2[ms] for LF
- Maximum decoupling power is 1.5W for 1H and 19F, and 5W for other nuclei. It is not guaranteed probe will survive if decoupling at this power level continuously.
- The **maximum duty cycle** for decoupling at maximum power and with CPMG experiment types is: **5%**
- % is used for reference in solids.
- Power is used for reference, it varies with probes and nuclei. Typically maximum power for 1H is 30W and maximum continuous power is 1.5W. If different, the table should be modified accordingly
- Pulsewidth is used for reference on how it theoretically scales with attenuation

Power handling

- Power limits are safe limits, not an objective. Always use the lowest power level that allows you to obtain good results (if you want your probe to last longer).
- Always check power levels when using a pulse sequence for the first time
- Exceeding the power levels in these tables will void the warranty
- In case of doubt, ask!

duty cycle

Check Diagram to quickly find any long RF irradiation

Carbon 13 decoupling: Check irr atn dec, if less attenuation (more power) than CW, evaluate duty cycle: is acquisition time less than maximum irradiation time at this attenuation?

Power handling HF channel

Attenuation	power	irradiation	% (Voltage)	pulsewidth
x_atn+0[dB]	30W	1ms	100%	10us
x_atn+3[dB]	15W	5ms	70%	
x_atn+6[dB]	7.5W	25ms	50%	20us
x_atn+9[dB]	3.75W	125ms	35%	
x_atn+12[dB]	1.88W	625ms	25%	40 us
x_atn+15[dB]	1W	CW	17.7%	

These are the maximum irradiation times with a duty cycle of 2%, at the specified attenuations (x_atn= attenuation level for the 90 pulse in probe specifications) In general, do not use attenuation levels below x_atn+18[dB] for decoupling

[This table assumes attenuation changes linearly and irradiation is then calculated from Square pulse attenuation; but amplifiers are not so linear at the highest power, so a safety margin is recommended]

Power handling LF channel

Attenuation	power	irradiation	% (Voltage)	pulsewidth
x_atn+0[dB]	160W	0.2ms	100%	10us
x_atn+3[dB]	80W	1 ms	70%	
x_atn+6[dB]	40W	5 ms	50%	20us
x_atn+9[dB]	20W	25ms	35%	
x_atn+12[dB]	10W	125ms	25%	40us
x_atn+15[dB]	5W	625ms	17.7%	
x_atn+18[dB]	2W	CW	12.5%	80us

These are the maximum irradiation times with a duty cycle of 2%, at the specified attenuations (x_atn= attenuation level for the 90 pulse in probe specifications) In general, do not use attenuation levels below **x_atn+21[dB]** for **decoupling**

[This table assumes attenuation changes linearly and irradiation is then calculated from Square pulse attenuation; but amplifiers are not so linear at the highest power, so a safety margin is recommended]

400 ROYAL specifications

LCT		Maximum power		Maximum continuous power	
		W	dB	W	dB
	1H	30		1.5	
	19F	30		1.5	
			1		
Х	31P	50		5	
Х	11B	50		5	
А	13C	80		5	
A	29Si	80		5	
А	2H	80		5	
В	170	150		5	
С	15N	150		5	
D	39K	80		5	

Lock 15	
---------	--

Other nuclei

Lithium7, Tin117, Tin119

Bromine81, Copper63, Copper65, Gallium71, Praseodymium141, Rubidium87, Sodium23, Tellurium125, Vanadium51, Xenon129

Aluminum27, Bromine79, Europium151, Gallium69, Manganese55, Niobium93, Scandium45, Tellurium123, Terbium159

Antimony121, Cadmium111, Cadmium113, Cobalt59, Holmium165, Indium113, Indium115, Iodine127, Lead207, Platinum195, Rhenium185, Rhenium187, Technetium99

Arsenic75, Bismuth209, Lithium6, Mercury199, Selenium77, Ytterbium171 Antimony123, Beryllium9, Cesium133, Lanthanum138, Lanthanum139, Lutetium175, Tantalum181

Boron10, Barium137, Europium153

Silver109

Measured

Probe tool

🙆 Probe Tool : ecz500r

- Named pairs tab contains the calibrations for each nucleus
- Square is used for hard pulses ٠
- Hi is used for decoupling during acquisition ٠
- Lo is used for decoupling during relaxation delay
 - Normally Hi/Lo pulses are set lower than CW decoupling for safety
 - *Note Wurst(xx) and BUSS decouplings do not use Hi/Lo decoupling
- Soft is used for shaped pulses
 - **There may be some exceptions
- Spin is used for spin-lock pulses (TOCSY, saturation-recovery, etc.)
- Nuclei not calibrated appear with 1[us] 90 pulse at 79[dB] ٠
- Note different calibrations for Proton and Fluorine in the HFX probe. Idler can be • Single or Dual

ŧ

T

Power handling solids

Power handling AutoMAS 3.2 400 MHz

Attenuation	power	irradiation	% (Voltage)	pulsewidth
x_atn+0[db]	80W	50 ms	100%	2.7 us
x_atn+3[db]	40W	100 ms	70%	
x_atn+6[db]	20W	200 ms	50%	5.4 us
13C (LF) channel				

Attenuation	power	irradiation	% (Voltage)	pulsewidth
x_atn+0[db]	220W	5 ms	100%	2.5 us
x_atn+3[db]	110W	10 ms	70%	
x atn+6[db]	55W	20 ms	50%	5.0 us

Maximum 1.25 % duty cycle

¹ H/ ¹⁹ F	³¹ P/ ⁷ Li/ ¹¹ B	²³ Na/ ²⁷ Al/ ¹³ C	²⁰⁷ Pb	²⁹ Si	⁶ Li	¹⁵ N
Maximum decoupling power(W): 80	176	220	248	248	256	272

Maximum input power: Maximum decoupling power * 1.25

Power handling HXMAS 4mm 400 MHz

1H (HF) channe							
Attenuation	power	irradia	tion	% (Voltag	e)	pulse	ewidth
x_atn+0[db]	48W	80 ms	5	100%		3.9 u	IS
x_atn+3[db]	24W	160 m s	S	70%			
x_atn+6[db]	12W	320 m	S	50%		7.8 u	IS
13C (LF) channe	I						
Attenuation	power	irradia	tion	% (Voltag	e)	pulse	ewidth
x_atn+0[db]	144W	5 ms		100%		3.7 u	IS
x_atn+3[db]	72W	10 ms		70%			
x_atn+6[db]	36W	20 ms		50%		7.4 u	IS
Maximum 1.6 %	duty cycle						
	¹ H/ ¹⁹ F	³¹ P/ ⁷ Li/ ¹¹ B	²³ Na/ ²⁷ Al/ ¹³ C	²⁰⁷ Pb	²⁹ Si	⁶ Li	¹⁵ N
Maximum decouplir	ng power(W): 48	112	144	160	160	184	224

Maximum input power: Maximum decoupling power * 1.25

AutoMAS 3.2mm vs HXMAS 4mm

• AutoMAS

Resolution:	0.1 ppm or lower (specified at ADM $^{13}\mathrm{C}$ FWHM)		
Sensitivity:	120 or higher (specified at HMB ¹³ C 8 scans)		
Maximum MAS speed (at room te	emperature):		
	22,000 Hz (Guaranteed speed: 21,000 Hz)		
Gradient field:	Not included		
Variable temperature range:	-60°C to +150°C		

• HXMAS

Resolution:	0.05 ppm or lower (ADM, FWHM of ¹³ C)
Sensitivity:	260 or higher (HMB, 8 scans, S/N of $^{\rm 13}{\rm C})$
Maximum MAS speed at room	temperature
	18,000 Hz (guaranteed 17,000 Hz)
Field gradient:	Not available
Variable temperature range:	–20 °C to +80 °C
Sensitivity: Maximum MAS speed at room Field gradient: Variable temperature range:	260 or higher (HMB, 8 scans, S/N of ¹³ C) temperature 18,000 Hz (guaranteed 17,000 Hz) Not available -20 °C to +80 °C

Probe tool

- Named pairs tab contains the calibrations for each nucleus
- Square is used for hard pulses
- Hi is used for decoupling during acquisition
- Lo is used for decoupling during relaxation delay
 - Normally Hi/Lo pulses are set lower than CW decoupling for safety
 - ----*Note Wurst(xx) and BUSS decouplings do not use Hi/Lo decoupling
- Soft is used for shaped pulses
 - **There may be some exceptions
- Spin is used for spin-lock pulses (TOCSY, saturationrecovery, etc.)
- Nuclei not calibrated appear with 1[us] 90 pulse at 79[dB]
- Note different calibrations for Proton and Fluorine in the HFX probe. Idler can be Single or Dual

In standard solids experiments only the Square calibration is used.

CP, decoupling or other calibrations are not saved in probe tool

Standard Tube

NM-05420ST4 (4mm) / NM-05410ST32 (3.2mm)						
Items	Materials					
Spinning Cap	Vespel ®*1	Spinning Cap				
Bottom Cap	PEEK *2	Sleeve				
Sleeve (Color : White)	Zirconia (ZrO ₂)	Spacer				
Spacer	PCTFE*3	Bottom Cap				

*1: Vespel ®: A trademark or registered trademark of E.I. du Pont de Nemours and Company or its affiliates.

*2:PEEK: PolyEther Ether Ketone

*3:PCTFE: Poly Chloro Tri Fluoro Ethylene

Spinning Detection Maker : Black permanent ink pen

	•			
		NM-05420ST4 (4mm)	NM-05410ST32 (3.2mm)	
Maximum MAS speed (Guaranteed MAS speed)	At room temperature	18,000 Hz (17,000 Hz)	22,000 Hz (21,000Hz)	
	At high temperature VT	16,000 Hz (15,000 Hz)	19,000 Hz (18,000 Hz)	
	At low temperature VT	14,000 Hz (13,000 Hz)	17,000 Hz (16,000 Hz)	
Variable Temperature Range	with spacer	-100 to +80 °C		
	without spacer	-100 to +150 °C		

K The MAS speed of the sample tube is limited by changing the temperature.

 \swarrow The usable temperature range varies depending on the presence or absence of spacers.

Heat Resisting Tube

NM-05470HST4 (4mm) / NM-05460HST32 (3.2mm) Materials Items Vespel ®*1 Spinning Cap Spinning Cap Bottom Cap PEEK *2 Heat Resisting Spacer Sleeve Sleeve Heat Resisting Zirconia (ZrO_2) (Color : Yellow) Bottom Cap Spacer PTFE*3

*1: Vespel ®: A trademark or registered trademark of E.I. du Pont de Nemours and Company or its affiliates.

*2:PEEK: PolyEther Ether Ketone

*3:PTFE: Poly Tetra Fluoro Ethylene

Spinning Detection Maker : Black permanent ink pen

	•	-	
		NM-05470HST4 (4mm)	NM-05460HST32 (3.2mm)
	At room temperature	18,000 Hz (17,000 Hz)	22,000 Hz (21,000Hz)
Maximum MAS speed (Guaranteed MAS speed)	At high temperature VT	16,000 Hz (15,000 Hz)	19,000 Hz (18,000 Hz)
	At low temperature VT	14,000 Hz (13,000 Hz)	17,000 Hz (16,000 Hz)
Variable Temperature Range		-100 to +200 °C	

The MAS speed of the sample tube is limited by changing the temperature.

Sealing Tube

NM-05450SST4 (4mm) / NM-05440SST32 (3.2mm)

Items	Materials					
Spinning Cap	PCTFE*1		Spinning Cap	n		
Bottom Cap	PCTFE*1		Sleeve	Spacer		
Sleeve (Color : White)	Zirconia (ZrO ₂)		Spacer			
Spacer	PCTFE*1		Bottom Cap			
*1:PTFE: Poly Tetra Fluoro Ethylene						
Spinning Detection Maker : Gold permanent ink pen						
			NM-05450SST4 (4mm)	NM-05440SST32 (3.2mm)		
Maximum MAS speed (Guaranteed MAS speed)		At room temperature	9,000 Hz (8,000 Hz)	10,000 Hz (9,000Hz)		
		At high temperature VT	6,500 Hz	8,000 Hz		
Variable Temperature Range			-20 to +50 ℃			
MAS speed of the sample tube is limited by changing the temperature.						

Too much a sample

If it too much sample in the solid sample tube, the cap cannot close completely. If the sample tube is spinning while the cap is not completely closed, the cap may remove out during spinning, the probe causes to damage.

Especially, solid-state NMR increases the temperature of the sample itself by spinning the sample tube at high speed.

Generally, the sample volume increases due to thermal expansion as the sample temperature rises.

Although the coefficient of thermal expansion varies depending on the sample, if there are too many samples, the expanded sample pushes up the cap, which may cause the cap to come off the sleeve.

Therefore, it is better to fill a little less sample in the solid sample tube.

Thermal expansion Glass << Metal << Resin Metal is 4 times larger than glass, and resin is 20-30 times larger than glass.

Webinars

- An Introduction to Solid-State NMR <u>https://attendee.gotowebinar.com/register/1588889</u> <u>267810221067</u>
- Solid-State NMR Tutorial: Sample Packing, Standard Samples & Sample Spinning <u>https://attendee.gotowebinar.com/register/8621407</u> <u>423140093454</u>
- More webinars:

https://www.jeol.co.jp/en/news/seminar/websemin ar/movie_index.html

Pulse hard vs soft

Excitation profile of a 90 degree pulse

Excitation profile of a 90 degree pulse

Rectangular pulses

- Referred to as "hard" pulses
- Effective at exciting broad bandwidths, with relatively flat excitation over the frequency range 0 to ~1/T Hz
- Shorter pulses lead to broader excitation (1/T is larger)
- Poor choice for selective (narrow frequency range) excitation (need <u>very</u> long t!)

Gaussian pulses

- Referred to as "soft" pulses
- Excitation profile is also Gaussian (narrow with relatively rapid falloff)
- Shorter pulses correspond to narrow excitation profiles
- Useful for selective pulses

Hard vs. soft pulses

Adiabatic pulses

Rectangular pulses

- + Very short pulse width (µs)
- Small excitation profile
- High power

Adiabatic pulses

- → Adiabatic pulses do frequency sweep of kHz to MHz, spin magnetization follows the slow (adiabatic) inversion profile
- → Replace bandwidth-critical 180° pulses by adiabatic pulses
- + Extremely wide excitation bandwidth (essential for fields ≥ 600 MHz!)
- + Low power
- Long pulses (typ. 1-50 ms) have to be compensated in pulse sequences

Example of shaped pulse

Fluorine excitation (hard pulse in a ECZ-S 400)

Shape Viewer

Shape Viewer

The tool which calculates the attenuator value for each shaped pulses automatically from the value of square pulse

💧 Shape	Viewer	
FG S	Shapes Shape SQUARE & Square 100.	000
Coil	None Freq. Response	Mult 8
Domain	None Bandwidth Ba	Display
Refe	rence Square 90 Target Square 90	Result Shape 90
90 Pulse	90 Pulse 90	0 Pulse
Atn	Atn M	lin. Atn
9.	₹ k, Ø+	Alt Shift 🔳 🌒
Offset F Amplitude abundance abundance	0.5-0.2 0.1 0.49.5 99.7 99.9 100.1100.100.3100	
	X Ruler : State Position inside Pulse	

Functions of Shape Viewer

Main functions of Shape Viewer

- Calculation of pulse width
- Graphical shape review
- Profile of excitation
- Simulation of exciting region

🙆 Sł	nape	Viewer							_ D X
	FG S RF S Nois	Shapes Shapes Se	Shape SC	įuaf	RE	🔶 % Squ	are 1	00.000	- AB
Co	oil	None				Freq. Respo	nse	Mult	8
Don	nain	None			Bandwidth			Display Bandwidth	
	Refe	rence S	Square 90	_	Targ	get Square 90		Resu	t Shape 90
90 P	ulse				90 Pulse			90 Pulse	
At	tn				Atn			Min. Atn	
Q	87 .	<u>7</u> 4			^ <u></u>				Alt Shift ■
Offset 🛛 🏂 🗍 Amplitude	abundance abundance	.5-0.2 0.1 0.49.5 99.7 99.9 100.1100.3100 համատատանականությունությունությունություն							
				Х	Ruler : Sta	te Position ins	side Pu	Ilse	

- 1. Select the target shape
- 2. Select a nucleus to "Domain"
- 3. Input the target pulse width

- 1. Select the target shape
- 2. Select a nucleus to "Domain"
- 3. Input the target pulse width

- 1. Select the target shape
- 2. Select a nucleus to "Domain"
- 3. Input the target pulse width

- 1. Select the target shape
- 2. Select a nucleus to "Domain"
- 3. Input the target pulse width

How to put the result into experiment

Pulse width of selective reverse (180 degree) pulse

Attenuator of selective pulse

Offset of selective pulse

Shape of selective pulse

··· from V5.1.0

Automatically calculated

obs_sel_180	40[ms]	x90_soft * 2
obs_sel_shape	GAUSS	
obs_sel_atn	70.43[dB]	soft_atn_calc
obs_sel_offset	5[ppm]	x_offset
soft_atn_calc	70.43[dB]	

obs_se	_180	40[ms]	x90_soft * 2
obs_se	_shape	GAUSS	
soft_ban	dwidth_hz	53.15[Hz]	
soft_band	lwidth_ppm	0.13295[p	pm]
soft_at	n_calc	70.43[dB]	
obs_se	_atn	70.43[dB]	soft_atn_calc
obs_se	_offset	5[ppm]	x_offset
Display the profile of Frequency Response

Display the profile of Frequency Response

Compare the profile with the actual spectrum

Compare the profile with the actual spectrum

50[ms] is better for selecting the peak at 2.9[ppm]

Pure shift

https://www.nmr.chemistry.manchester.ac.uk/?q=node/421

Proton

Zangger-Sterk

PSYCHE

TSE-PSYCHE

PSYCHE-TOCSY (F1) + NUS + Covariance

49

Relaxation

Relaxation

- O Exponential processes
- \odot Longitudinal, or spin-lattice, relaxation (T₁)
- OT_1 relaxation mechanisms
- \odot Transverse, or spin-spin, relaxation (T₂)

Relaxation

XY component decays to zero (also the initial equilibrium state)

What causes relaxation in NMR?

In case UV or VIS, the energy gap ΔE is large and the relaxation is dominated by spontaneous emission of photon. However, the energy gap in NMR is extremely small If spontaneous emission of photon dominates the relaxation in NMR, T₁ is estimated to 10⁹⁻10¹⁰sec (30years-300years!) even at a high field machine

What causes relaxation in NMR?

The primary interaction to cause NMR relaxation in liquid state is dipole-dipole interaction between two nuclear spins.

 13 C at the right picture experiences dipole field from ¹H. The dipole field changes an angle to B₀ with molecular tumbling in liquid.

Molecular motion vs T₁

T₁ mechanisms

- Relaxation occurs when nearby local fields fluctuate at the Larmor frequency of a nucleus
 - Chemical shift anisotropy (CSA)
 - Quadrupolar interactions (Q)
 - Scalar coupling (SC)
 - Electron-spin interactions (ES)
 - Spin rotation (SR)
 - Dipole-dipole interactions (DD)

Relaxation related Information and NMR parameter

- Molecular structure
- Molecular mobility
- Inter-molecule interaction
- Chemical exchange
- NMR spectrum and experimental condition sensitivity accuracy of integration pulse program parameter optimization

Molecular interaction elucidated by NMR relaxation

T₁ by inversion recovery

- Measure intensity as τ is varied
- Plot In (A_{∞}-A) vs. τ or fit data

T₁ by inversion recovery

Area versus τ

"Quick" T₁ test

🖉 [fujii] Open Experiment	
Path: C: • C: C: C: • C:\Program Files\JEOL\Delta\global/experiments/relaxation	🖉 [fujii] Experiment Tool: double_pulse.ex2
	File Tools View Options
Format:	
Directory Filename Version	
- Favorites -	Header Instrument Acquisition Pulse
double pulse ex2	Treader Instrument Acquisition Tuise
dowble_nuse_shape.ex2 dowble_nuse_shape.ex2	x_pulse 13.9[us] x90]
sat_recovery.ex2 sat_recovery.dc.ex2 snipeckery2	x_aiu 3[dB] xabi
spinlock_dec.ex2	tau_interval 10[s]
	relaxation_delay 7[s]
Info:	repetition_time 8.81992[s]
Ok Info Delete Refresh Cancel	dante_presat 🔾
180° pulses(x, pulses ²) 90° pulses(x, pulse)	presat_time 7[s] relaxation_delay
	dante_pulse 2[us]
L ACQu	uisition dante_interval 0.1[ms]
relaxation delay tau interval /	dante_attenuator 40[dB]
	dante_loop 686
	eca600 demo.jeoluk.com Total Collection Time: 00:00:20

"Quick" T₁ test

Quick T₁ measurement: Saturation recovery

- Avoid long recovery delays <u>relaxation_delay</u>
- Correct the saturation time (1[s] may damage the probe)

1[s]

T₂ measurement

• CPMG $RF = \int_{90_X} \left[\begin{array}{c} \tau \\ 180_y \end{array} \right]_{n} \left[\begin{array}{c} \tau \\ 180_y \end{array} \right]_{n} \left[\begin{array}{c} \tau \\ \eta \end{array} \\]_{n} \left[\begin{array}{c} \tau \\ \\[\end{array}[\end{array}]_{n} \left[\begin{array}{c} \tau \\$

- Increase n to increase the time magnetization is in transverse plane
- J-modulation problems
 - $-\tau$ needs to be very short <2ms
 - Heating problems
 - Result is a mixture of T_2 and $T_{1\rho}$
- Isotropic mixing

T₂ measurement

- Project $RF = \int_{90_x} \begin{bmatrix} \tau & \tau & \tau & \tau & \tau \\ 180_y & 90_y & 180_y & \int_{n}^{\pi} \end{bmatrix}$
- Train of perfect spin echos
 - J-modulation is quenched for $\tau J \ll 1$
- τ can be as long as 5ms
- Planar mixing (about half as fast as isotropic mixing)

https://doi.org/10.1039/c1cc16699a

How to array tau_interval / delay_list?

- Saturation recovery: Exponential from $T_1/10$ to $10*T_1$
- Inversion recovery: Logarithmic base 0.3 from $T_1/20$ to $5*T_1$

(if last tau_interval is not long enough, use non-linear fitting)

• CPMG / Project: Logarithmic base 0.3 from $T_1/50$ to $2.5*T_1$

Solvent suppression

Solvent Suppression

- Ideally NMR samples are dissolved in fully deuterated solvent, this provides the lock signal and also will not appear in the spectrum
- Large protonated signals will prevent the observation of small signals due to the dynamic range limitation of the spectrometer
- They may also obscure signals, contributing to T₁noise and baseline distortions
- The solution to these problems is to remove the solvent signal

Suppression methods

- There are many different ways available to suppress solvents, but fundamentally these fall into three categories:
 - One can presaturate the solvent resonance with weak, continuous rf at its frequency
 - Manipulate the solvent magnetization to produce zero magnitude ("jump and return")
 - Use pulsed field gradients (WATERGATE, WET) to eliminate solvent resonances
- All methods work best when the sample is well shimmed!

Pre-saturation to suppress a solvent signal

Pre-saturation to suppress a solvent signal

Delta version 4 series

🖉 [fujii] Experiment Tool: single_pulse.ex2 📃 🗆 🗙					
File Tools View Options					
	Submit				
Header Instrument Acquisition Pulse					
x_angle	45[deg]				
x_90_width	7.66[us] [x90]				
x_atn	3[43]				
x_pulse	3.83[us]				
relaxation_delay	5[5]				
repetition_time	6.81992[s]				
dante_presat	0				
presat_time	5[s] relaxation_delay				
dante_pulse	2[us]				
dante_interval	0.1[ms]				
dante_attenuator					
saure_roop	490				
irr_mode	Presaturation				
irr_domain	Proton				
irr_offset	4.63947[ppm]				
irr_attenuator	 40[dB] 				
tri_mode	Off \$				
tri_domain	Proton				
tri_offset	[5[ppm]]				
tri_attenuator					
ca600 demo.jeoluk.com Total Collection Time: 00:01:00					

Delta version 5 series

🧳 Spectrometer Control							
Connection Tools Config Experiment							
👔 🕼 gradamp 👔 eca500							
User: delta Owner: delta	1 Monitor Status	Sample: Sample Job: - Method: - Action: Idle Collected: - Time: -	(1) <u>9</u> Curr inco	ent tuning information for Prot mplete.	be is missing or		
Open Jobs	Sample Name	Solvent	Slot Kind F	Preparation	Comment		
Vew Job 8 Proton Proton 0:02	Sample Chloroform-I	D 1	Liquids	TRUE			
	Header Instrument Acquisition	Pulse Diagram ☆ Fa	vorites		dd Parameters		
	phs_shft 0						
	rr_mode Presaturat	ion			(
	irr_domain Proton						
	irr_offset [5[ppm]						
	irr_attenuator [40[dB]						
	tri_mode Off				•		
	tri_domain Proton				μ		
	tri_offset [5[ppm]						
	🖳 🗋 Deliver data automatically				Submit Job		
Receiver Gain: 50 Spin: 0[H	Hz] 🔐 🔒 🔒 🔒	Temp: 25[dC]	Helium: 50[%]	Nitrogen: 75[%]	Queue Length: 0		

Presaturation Methods

- The basic presaturation is a long, low power, irradiation at the solvent position
- Better results can be obtained with methods that only excite the regions with good r.f. homogeneity, which excludes peripheral regions contributing to the water 'hump'
- Presaturation methods are
 - simple and reliable
 - suppress exchangeable protons

Gradient solvent suppression methods

• These work by using pulsed field gradients acting to dephase the solvent signal.

WATERGATE (Water suppression by Gradient Tailored Excitation)Good for protein and bio-molecule sample with water.Exchangeable protons are observable.

WET (Water suppression enhanced through T₁ effect) Because we can remove ¹³C satellite signals, this is good for organic solvent suppression (No-D NMR and LC-NMR).

Watergate method

<u>Water</u> Suppression by <u>Gradient Tailored Excitation</u>

(Nonsolvent resonances near the solvent are also attenuated)

Experiment name in Delta: wgh.jxp (Delta V5), wgh.ex2 (Delta V4)
Watergate of herbal tea

Robust5 method for solvent suppression

Wet result (use noD script)

Experiment name in Delta: single_pulse_wet_slp.jxp (Delta V5), single_pulse_wet_slp.ex2 (Delta V4)

VT

VT in automation

• Delta can be configured to set a temperature for each sample:

O O Automation :	ecs400.jeol.com	
File Sample Options		
	2 💿	
Filename:		
Comment:		
Slot:	Sample Status LOADED	
Temp. Set: 25/4C	Curr. Temp. 23.3[4C]	
Temp. State: TEMP OFF	Lack Status	
Sohreat: CHLOROFORM D CYCLOHEXANE-D12 D20 DMF-D7		
Notify: Export to:) () ны	
— glp.auto2 —	Remove	
Signal to Noise 1H	Signal to Noise 15N	
Signal to Noise 13C eb	Signal to Noise 13C astm	
Signal to Noise 19F	Signal to Noise 31P	
Centerband Suppression	Lineshape	
Quad Image	RF Homogeneity	
1H Beat Test	13C Beat Test	
11100 Deerve Shared	111 00 Degree Spin Lock	

Delta version 4 series

Spectrometer Control Connection Tools Config gradamp 🛛 🚺 eca500 Sample: Sample (1) User: delta J. S Owner: delta Job: Method: Action: Idle Collected: Current tuning information for Probe is missing or Jobs Samples Queue 10 Monitor Status Time: complete Open Jobs Kind Preparation Sample Name Solvent Slot Comment Sample Liquids V Set_State ¥ ₫Ĭ Proton Carbon COSY DEPT Add Experiment Available Methods VT_target Carbon DEPT VT_delay HMBC HMQC temn 4 HSQC NOESY . Proton spin ROESY TOCSY lock 4 test2 (local) Vtilities save_to_sample 90_Degree Autoshim Disable Gradient Shim Gradient Shim Set State 2 8 8 🕂 🗕 🖒 🔒 + 🚺 🚰 Submit Job Receiver Gain: 50 Spin: 0[Hz] 2 Lock: 730 Temp: 25[dC] Nitrogen: 75[Queue Length: Helium: 50[9

Delta version 5 series

Solutions for Innovation **JEOL**

Low Temperature

- Delta can maintain a low temperature with FTS system at zero degrees C.
- Remember to change the switch in VT controller panel

VT Nitrogen Dewar

 The VT dewar 'trunk' attaches to the probe heater. The probe heater acts in conjunction with the dewar to provide precise and stable lowtemperature control by N₂ boil-off.

VT Dewar Setup

VT Nitrogen dewar usage

Check Handling of hardware manual

When the setting temperature is low, the nitrogen gas flowing in the probe may cause the sample to float. In such a case, attach the provided weight to the rotor. Use about three weights when the temperature is set to -75.1 °C or less.

If there is trouble ejecting sample there are two eject air adjustments at the back of the console. Eject valve is for when VT is used. Eject-S is for when no VT is used.

VT runs

- To run the same sample at a number of different temperatures
 - Note solvent freezing / boiling point
 - eg. CDCl3 (m.p. -63.5C, b.p. +61.2C)
 - Only take VT to within 10-15C of these limits
 - eg. CDCl3 min ca. -50C / max ca. +50C
 - Re-tune sample at ca. 30 degrees C intervals
 - Gradually change temperature to prevent thermal shock of the glass tube or the insert in the probe. I recommend no more than 20C change every 5 min. Array of VT_proton methods allow this

Thank you

You can discover more at

- http://www.jeol.co.jp/en/ (Products -> NMR)
 - Description of our products
 - Free processing software
 - Free natural products database
 - Application notes
 - Events
 - And more

You can discover more at	JEOL O PRODUCTS APPLICATIONS NOTES SUPPORT AS	JUT US
 <u>http://www.jeol.co.jp/en/</u> (Products -> NMR) – Description of our products 	2018/08/24 Update: NHR Challenge - Moving into the future with an evolution of reliability 2018/08/24 Deta NMR Software "Deta Titat" (NMOT_0057 to NMOT_0058) 2018/08/14 ROYALPROBE HRX Application Example (2) 2018/08/14 ROYALPROBE HRX Application Example (1) 2018/08/14 ROYALPROBE HRX	
 Free processing software Free natural products database Application notes Events 	Synthetic Organic Chemistry Laboratory (Kobayatri Lab), Department of Chemistry, Sonio af Science. University of Tokyo Aniyais Center (Ch.), Central Reservice. Disportations. Disportati	>
 – And more • <u>http://nmrsupport.jeol.com/</u> (license) 	PRODUCT LINEUP Image: Construction of the processing software MRR data processing software NMR data processing software MRR software MR	>