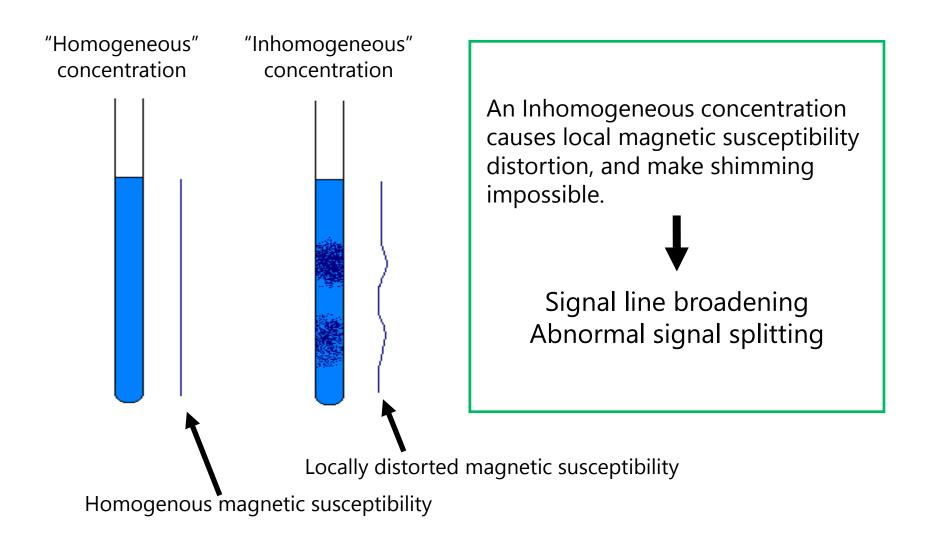


A Procedure of NMR Measurement

Solutions for Innovation JEOL

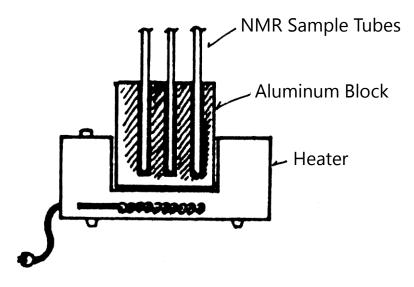
Solution NMR Sample Tube (ø 5 mm O.D.)

Volume: Ca. 0.5 ml

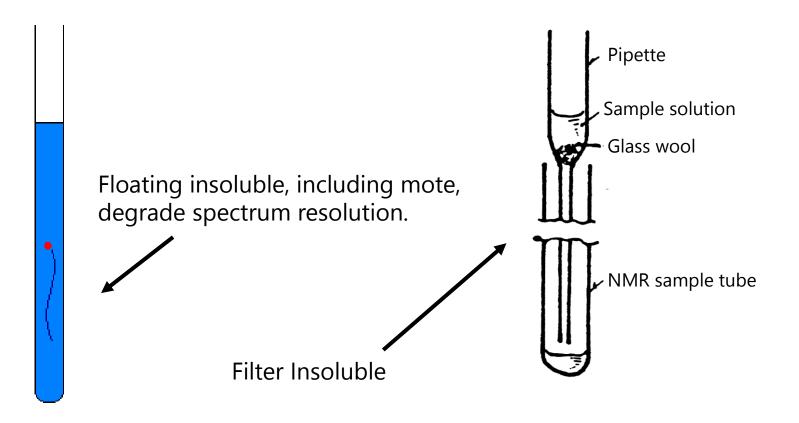

Sample should be dissolved in deuterated solvent in principle.

*Common deuterated solvents Chloroform-d (CDCl₃) Acetone- d_6 DMSO- d_6 Methyl Alcohol- d_4 (CD₃OD) Deuterium Oxide (D₂O)

Sample Preparation


- Dissolve Sample Homogeneously
 - \checkmark A totally homogeneous concentration is required.
 - \checkmark An appropriate concentration is required.
- Remove Insoluble
 - $\checkmark\,$ A floating materials in solution should not be exist.
- Remove (Beware) Impurities
 - ✓ Avoid signal line broadening due to paramagnetic impurities (organic radicals, metallic ions).
 - ✓ Avoid influence of water or acid in solvent.
- Select Purposeful Sample tube

Important Points of NMR Sample Preparation


Dissolve Sample Homogeneously

It is difficult to homogenize concentration due to high viscosity usually. In case of high resolution required, homogenize concentration carefully using long term diffusion.

Convection flow with long term heating is effective. *Replacing Nitrogen gas to avoid oxidation is recommended.

Notification for Polymer Solution

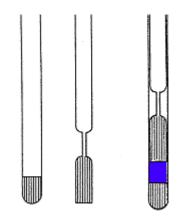
Remove Insoluble

Paramagnetic Impurities (* dissolved oxygen is paramagnetic!)

 Paramagnetic component such as metallic ion or organic radicals broaden NMR signals, let alone high concentration of those causes signal disappear and make NMR lock impossible.

Impurities of solvent

- A chloroform produces a hydrochloric acid as a photodecomposition product during storage. Thus it should be stored in a cool, dark place. A hydrochloric acid has to be removed before dissolving especially for an acid sensitive sample.
- ✓ Carefully handle pipetting to avoid contamination of solvent.
- ✓ Trace amount of water easily contaminate from used pipette.


Remove (Beware) Impurities

Special Sample Tubes

- Quartz Tube, PTFE Tube
 Background signals of ²⁹Si or ¹¹B from sample tube will not be obtained.
 (*Materials of a probe may be obtained)
- Shigemi Symmetrical NMR Microtube Reducing resolution degradation due to insufficient sample solution volume.
- Special Use High pressure sapphire cell, etc..
- * Disposable Tubes

"Cheap" NMR tube may have distortion, and degrade spectrum resolution.

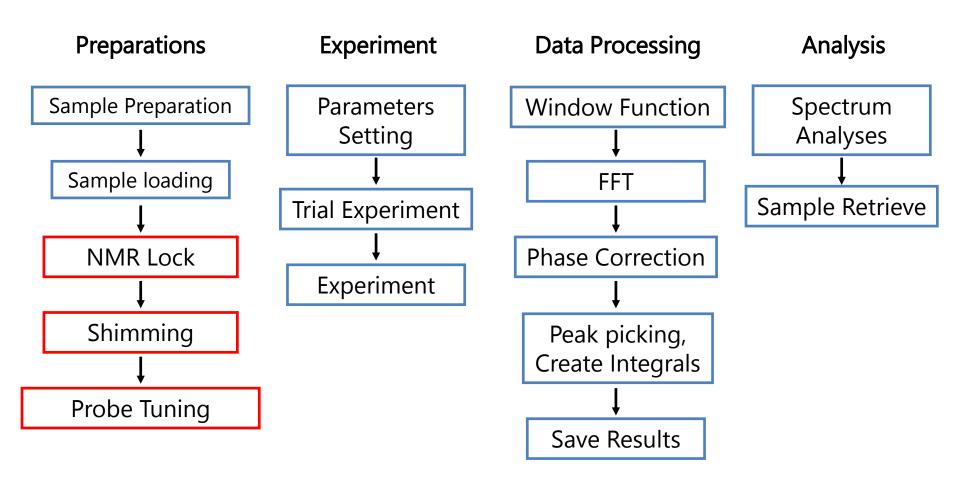
NMR sample tubes

The magnetic susceptibility matched symmetrical NMR microtube assembly by Shigemi Co., Ltd Clean away factors to degrade resolution.

Scratch

!! Do not scrub tubes with a brush.

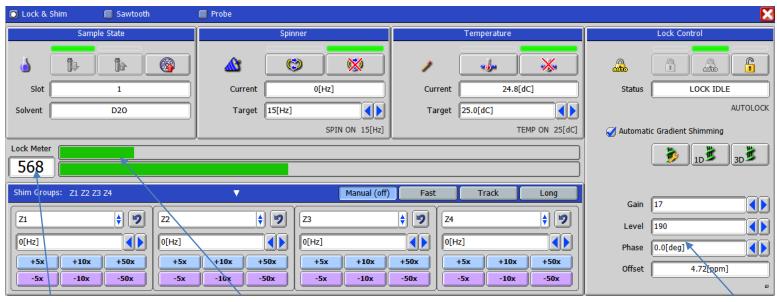
Distortion


Do not dry tubes in a laboratory oven.

Dust

!! Cap it to keep out dusts.

Cleaning, Drying, and Storing of Tubes


Solutions for Innovation JEOL

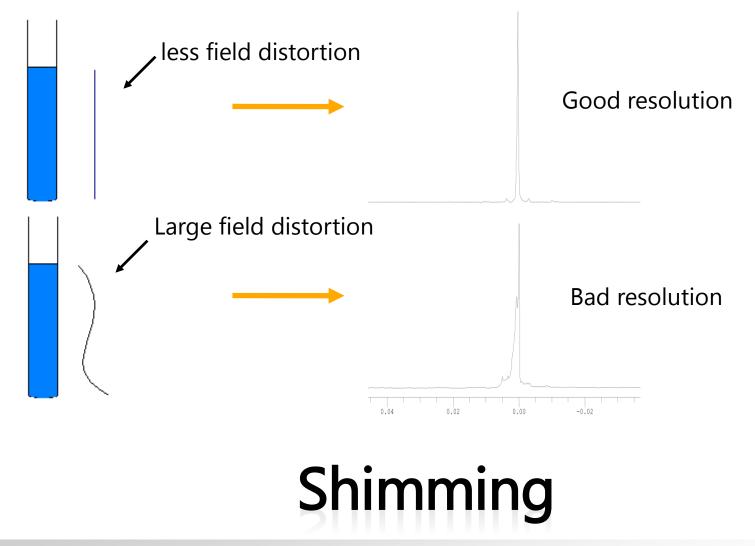
A Procedure of NMR Measurement

Solutions for Innovation JEOL

A magnetic field strength of NMR SCM (Super Conducting Magnet) slowly decreases at constant speed, and this phenomenon is called a 'field drift'. NMR signal in a long term accumulation will spread because a resonance frequency of signal is proportional to the magnetic field. This is a serious problem for high resolution NMR experiment. To avoid this problem, NMR system monitors and corrects magnetic field by referencing particular NMR signal. This correction procedure is called a 'NMR Lock'. The deuterium signal of deuterated solvent is used for referencing in general, and thus it is also called D-Lock.

Lock Signal Strength

Lock indicator


NMR Lock

Lock Parameters

A resonance frequency of NMR signal is proportional to the magnetic field.

 $(\omega = \gamma H)$

Magnetic field distribution in detectable sample space is reflected in signal shape.

The purpose of shimming is to obtain coefficients of power series expansion of field distribution function.

Low-order distortion

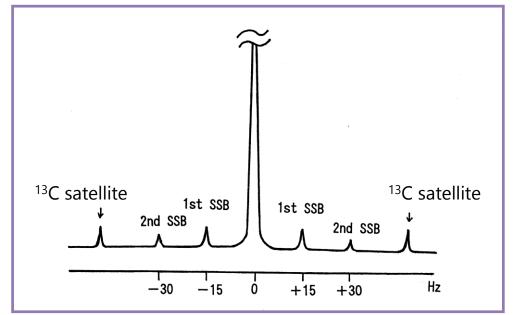
- SCM derived
- Volume difference
- Solvent difference

F(z) can be approximated with Z-Z⁶.

Shimming is possible to optimize in combination of Z^1 - Z^6

High-order distortion

- Inhomogeneity
- Bubbles
- Scratches

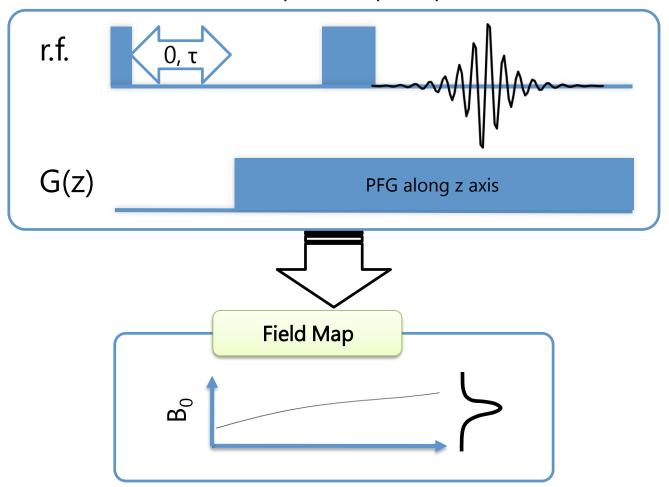

F(z) cannot be approximated without super high-order terms such as Z¹⁰⁰.

There is no way to optimize in combination of Z¹-Z⁶, and sample itself should be re-prepared.

Possible Case and Impossible Case of Shimming

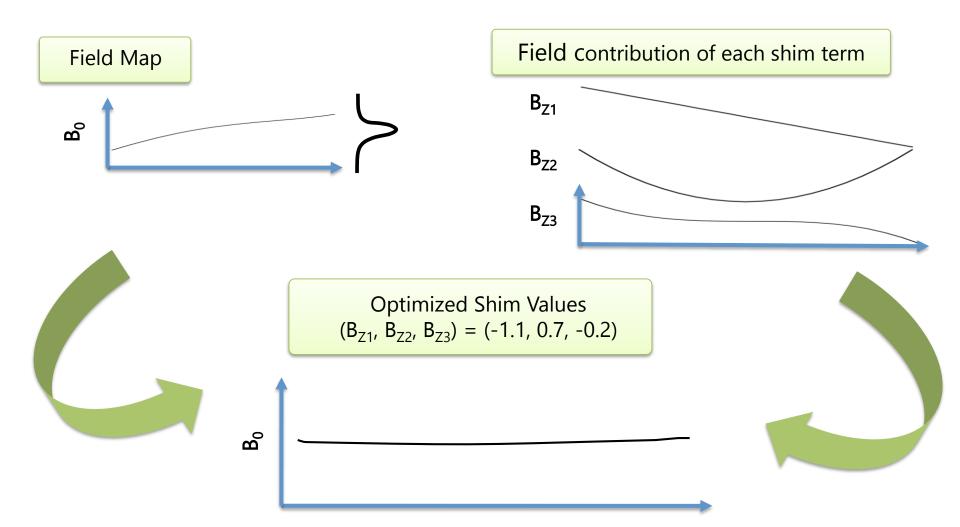
Field inhomogeneity in radial direction (X, Y) gives spinning sidebands (SSB) around signals.

- 1st SSB are obtained at the position of sample spinning frequency far from each signals. 1st order shims for X and Y shim term such as X, Y, XZ, YZ, and etc. should be optimized
- 2nd SSB are obtained at the position of double spinning frequency far from, each signals. 2nd or higher shims for X and Y should be optimized.

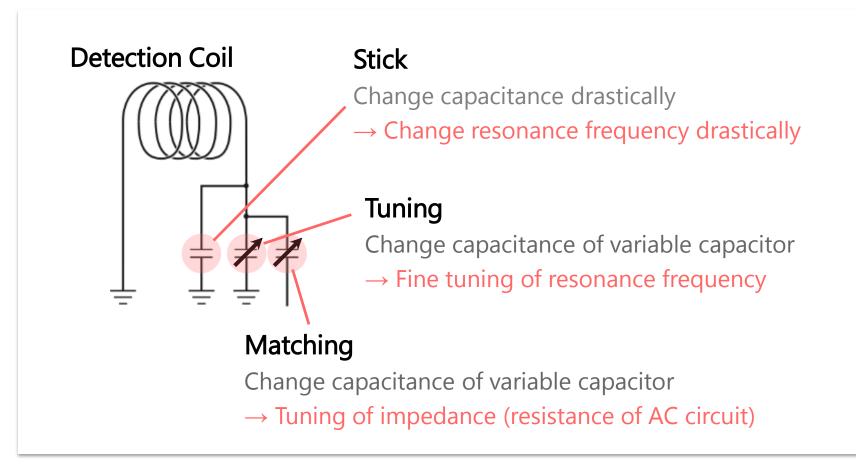


Sideband with other reasons

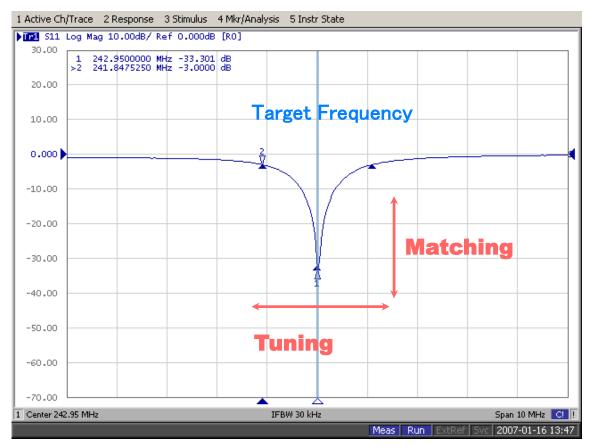
- Sidebands which has distorted phase from main signal might be due to the rotational motion fault.
- An Insufficient decoupling in multi-nuclear experiment causes decoupling sideband.


Non-Spinning Term Shimming

Field distortion can be described as a map (Same principle as MRI)

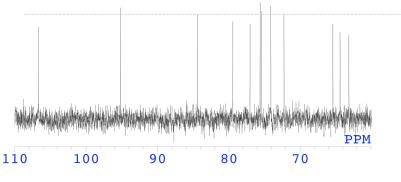

H. Barjat, P.B. Chilvers, B.K. Fetler, T.J. Horne, G.A. Morris, J. Magn. Reson., 125, 197-201 (1997).

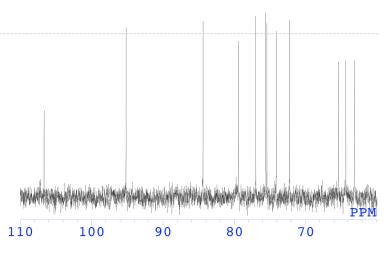
Gradient Shimming


Gradient Shimming

A NMR system is a tuned circuit of oscillator, probe, cable, and sample. Optimization of resonance frequency and impedance of probe, which varies depending on sample and temperature, is probe tuning and matching.

Probe Tuning


Solutions for Innovation JEOL

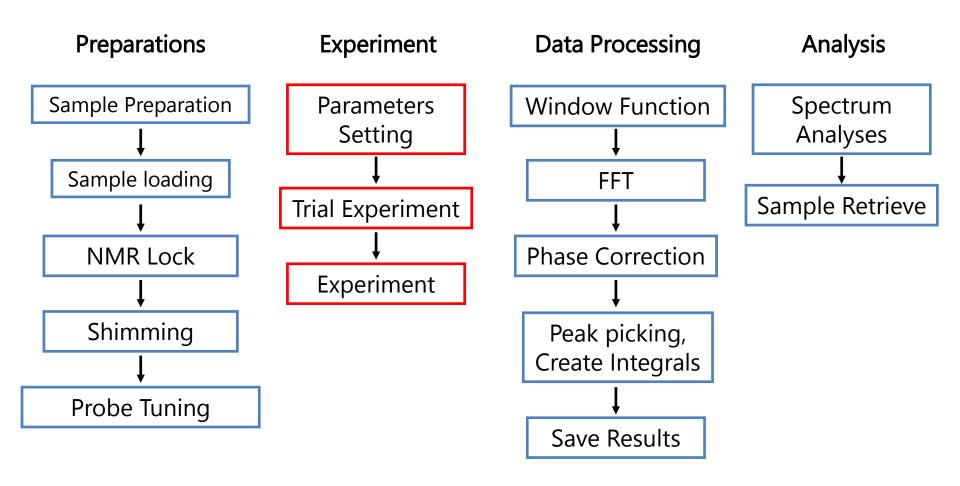

Radio frequency reflection characteristics of probe

Probe Tuning

Incorrect tuning... Causes sensitivity loss Causes significant error of pulse length (90 degree pulse increases) Causes insufficient decoupling

A spectrum of D2O solution which is probe tuned to the other Acetone solution.

A spectrum of D2O solution which is probe tuned to itself.


Probe tune strongly recommended cases

- Long term accumulation : sensitivity should be optimized.
- Variable temperature : different temperature varies tune.
- Multi-pulses experiments : pulse length should be correct.
- High-dielectric loss sample : high-dielectric loss varies tune.

Solvent	Water	Acetone	Benzene	Toluene	Ethanol	Methanol
Dielectric loss	3.19	0.31	0.00	0.00	9.59	6.63

- ✓ The dielectric loss of ethanol and methanol are significantly higher than others.
- ✓ Too high-dielectric loss sample gives pulse length error even though probe tuned.
- ✓ The dielectric loss of water containing ionic solute is very high although pure water is not so high.

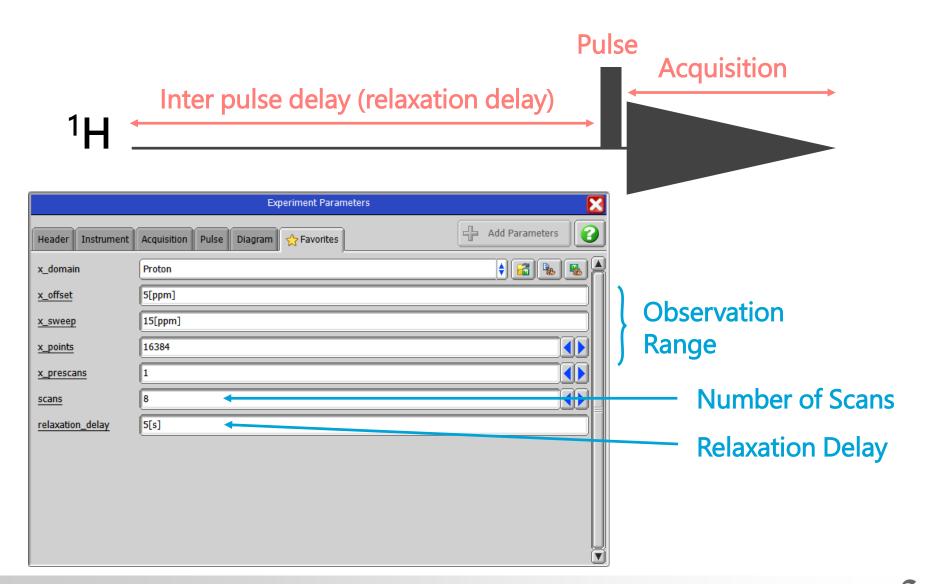
Dielectric loss difference of solvents

A Procedure of NMR Measurement

Solutions for Innovation JEOL

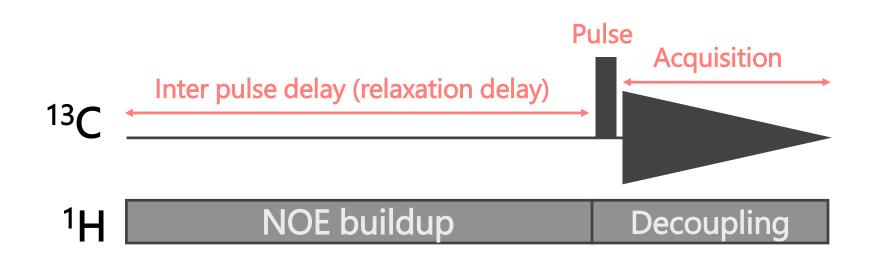
Experiment Parameters

		Experiment Parameters
Header	Instrument	Acquisition Pulse Diagram ☆ Favorites
storage_	_filename	test_proton \$(SAMPLE)_\$(EXP.filename)
filename	9	proton
storage_	_comment	single_pulse \$(SAMPLE.comment) \$(EXP.comment)
commen	ıt	single_pulse
auto_gai	in	0
filter_lim	nit	16
force_du	ual_mode	
force_tu	ne	0


¹H NMR

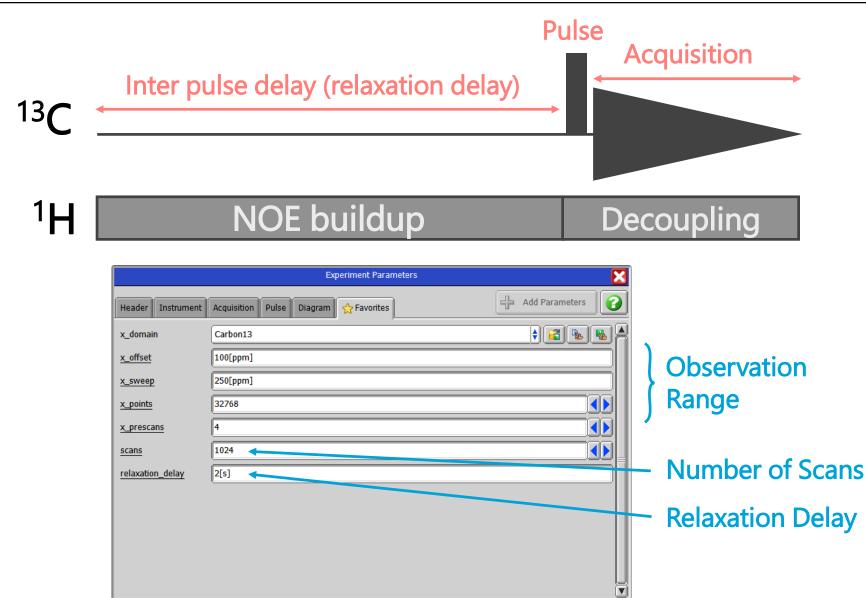
¹H NMR Information

- Integrals: Number of Protons
- Spin-spin coupling: Structure connectivity
- Chemical shift: Functional groups
- (deuterium exchange): exchangeable protons


¹H-NMR Parameters

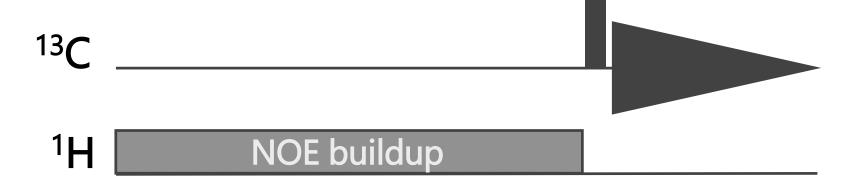
¹H NMR

Header Instrument	Acquisition Pulse	Diagram 🥎	Favorites		👍 Ad	ld Parameters	
x_domain	Proton					• 🖀 🐘 🛛	B A
x_offset	5[ppm]						
x_sweep	15[ppm]						
x_points	16384						
scans	8						
x_prescans	1						
mod_return	1						
x_acq_time	2.73215[s]						
x_resolution	0.36601[Hz]						
	X_S\	weep (S	Spectru	m Wi	dth)		
	1.		x_of	fset (Cente	r of Sp	ectrum)
13.0 12.0 11.0 1 Million : Proton	0.0 9.0 8.0	7.0 6.0	5.0 4.0	3.0 2.0	1.0 0	-1.0 -2.0	-3.0 -4.0 -5.0


¹³C NMR

¹³C NMR Information

- Number of peaks: Number of Carbons
- Chemical shift: Functional groups


¹³C-NMR Parameters

A kind of specific ¹³C NMR

Gated Decoupling

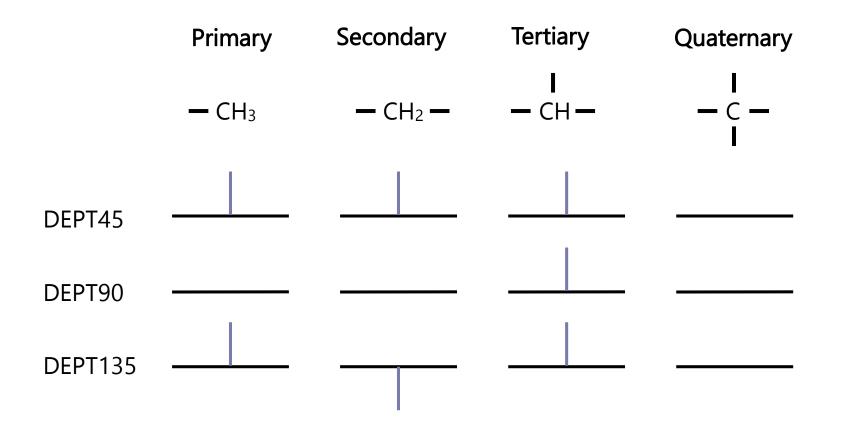
– Signal splitting with ¹H coupling \rightarrow Multiplicity assignment

Inverse Gated Decoupling

– Quantitative ¹³C experiment

¹³C ¹H Decoupling

A kind of specific ¹³C NMR

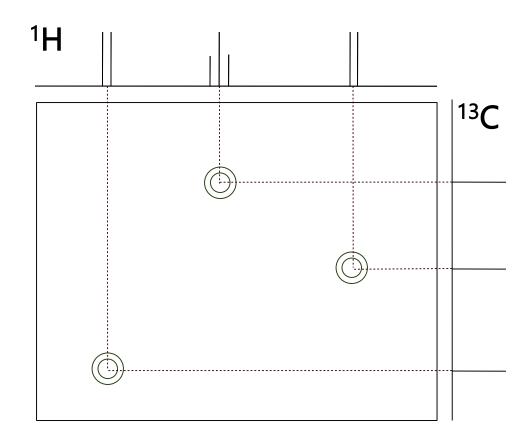

Header Instrument	Acquisition Pulse Diagram ☆ Favorites	Pulse
	Pulse	Acquisition
	er pulse delay (relaxation delay)	
	1[us] x90	
x_pulse	0.33333[us]	
	NOE buildup	Decoupling
relaxation_delay	2[s]	
repetition_time	3.30387[s]	
	irr_decoupling	
irr_noe	Ø	
irr_decoupling		
irr_domain	Proton	•
irr_noise	WALTZ	
irr_atn_noe	20[dB] [irratn_lo	
irr_offset	5[ppm] [irr_offset_default	

The sample spinning should be ONLY applied to 1D experiment !

- The sample spinning should not be applied to multipulse experiment even though it is 1D.
- It will cause sensitivity decrease.
- It may cause artifact signals.

¹³C-DEPT NMR

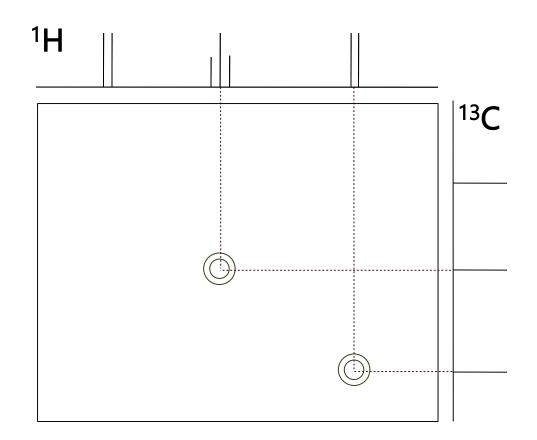
¹³C-DEPT NMR Information – Multiplicity of carbons


DEPT Parameters

	Experiment Parameters	3
Header Instrument	Acquisition Pulse Diagram 🏠 Favorites	
	Pulse	
x_pulse	1[us] x90	
x_atn	79[dB]	
	Irr Pulse	
irr_domain	Proton	
irr_offset	5[ppm]	
irr_pulse	5[us] irr90	
irr_atn	3[dB]	Coloction Angle
selection_angle	135[deg]	Selection Angle
selection_factor	1	🖌 (45°, 90°, 135°)
selection_pulse	7.5[us]	
	Pulse Delay	
j_constant	140[Hz]	
base_line_correct		
relaxation_delay	2[5]	
	irr_Decoupling	
irr_decoupling		
irr_noise	WALTZ	

C-H Correlation

- Correlation between directly bonded proton and carbon

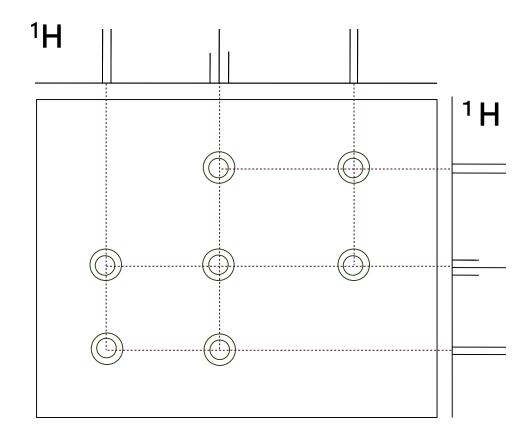

HMQC Parameters

	Experiment Parameters	
Header Instrument	Acquisition Pulse Diagram ☆ Favorites	
x_domain	Proton	
x_offset	[5[ppm]	
x_sweep	[15[ppm]	
x_points	1024	Observation
y_domain	Carbon13	
y_offset	85[ppm]	Range
y_sweep	170[ppm]	
y_points	256	
x_prescans	4	
scans		 Number of Scans
relaxation_delay	1.5[s]	Delevetien Deleve
		- Relaxation Delay

Long-Range C-H Correlation

HMBC, COLOC

Correlation between ¹H and ¹³C connected via 2 or 3 bonds

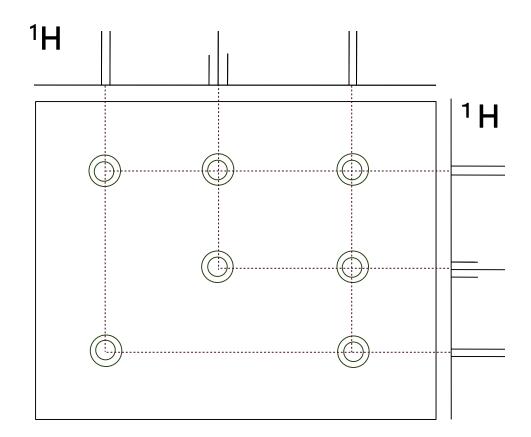

HMBC Parameters

	Experiment Parameters	
Header Instrument	Acquisition Pulse Diagram 🕎 Favorites	
x_domain	Proton 🕴 🚮 🗞 🕷 🖱	
x_offset	[5[ppm]	
x_sweep	[15[ppm]	
x_points	2048	
y_domain	Carbon13 🕴 🚮 🗞 🗞	Observation Range
y_offset	[100[ppm]	
y_sweep	250[ppm]	
y_points	256]
x_prescans	4	
scans	4	– Number of Scans
long_range_j	8[Hz]	
relaxation_delay	1.5[s]	 Long range J-constant
		Long range 5 -constant
		 Relaxation Delay

H-H correlation

HH-COSY

 Correlation between protons which have spin-spin coupling (protonated carbons ¹³C-¹³C connectivity)


COSY Parameters

	Experiment Parameters	
Header Instrument	Acquisition Pulse Diagram 🏠 Favorites	
x_domain	Proton	
x_offset	[5[ppm]	
x_sweep	[15[ppm]	Observation
x_points	1024	Range
y_points	256	
x_prescans	4	
scans		• Number of Scans
relaxation_delay	1.5[s]	
		Relaxation Delay

NOE correlation

HH-NOESY

- Correlation between spatially close protons (< 6Å)

NOESY Parameters

	Experiment Parameters	
Header Instrument	Acquisition Pulse Diagram ☆ Favorites	
x_domain	Proton	
x_offset	[5[ppm]	
x_sweep	[15[ppm]	Observation
x_points	1024	Range
y_points	256	
x_prescans		
scans		
mix_time	0.5[s]	Number of Scans
relaxation_delay	1.5[5]	
		Mixing Time
		Relaxation Delay

Solutions for Innovation