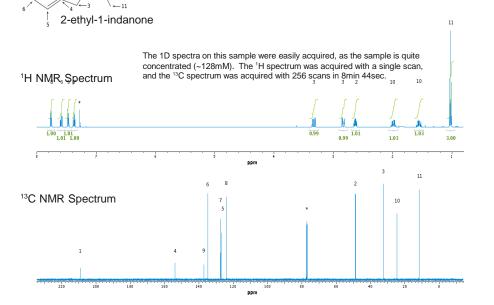
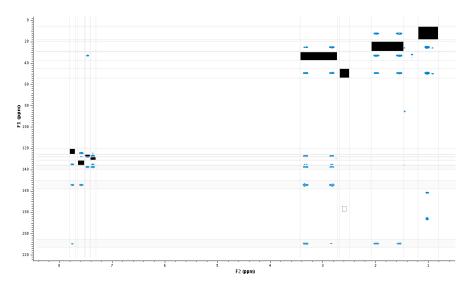
NMR Applications Biological Science


http://nmr.vuw.ac.nz

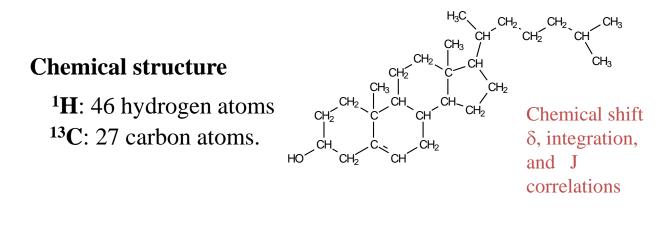

Chemical structure analyses

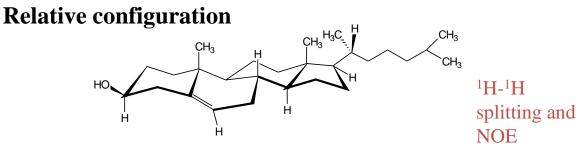
A sample of 2% 2-ethyl-1-indanone in CDCI was used to acquire all these examples.

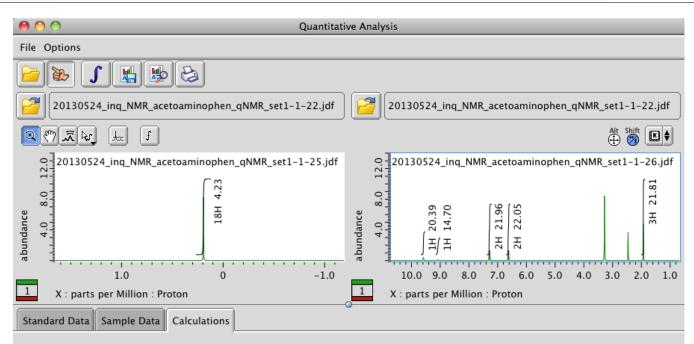
¹H-¹H Double-Quantum Filtered COSY


77

	¹ H- ¹³ C Gradient HSQC				•	•	
١.						÷	÷
			÷				1
1			÷		÷		÷
							1.1
				•	1	1	1
Í.							1
		:	1	1	1	1	1.1
		:	1	1	1	1	1.1
							1.1
	In this experiment each nearest neighbor ¹ H- ¹³ C pair produces a	1	1	1	1	1	1
-							
	signal, and the shift for each may be read as the coordinate of the	1	1	1	1	1	1
			÷	1	÷	÷	
	signal. This gHSQC was run with a multiplicity filter that makes	1	1	1	1	1	1
	the methylene peaks negative, which is why they are red in this		÷	1	÷	÷	
	the methylene peaks negative, which is why they are red in this contour plot.	1	1	1	1	1	1
	•		÷		÷	÷	
				1		1	1
		1	÷.,	1	÷	÷	÷
				1		1	1
			1		1.1	1	
				1		1	1
1	e e e e e e e e e e e e e e e e e e e	1	1.1	1	1.1	1	1
-	· · · · · · · · · · · · · · · · · · ·			1			1
	· · · · · · · · · · · · · · · · · · ·	1	1.1		1.1	1	1
				1	1		1

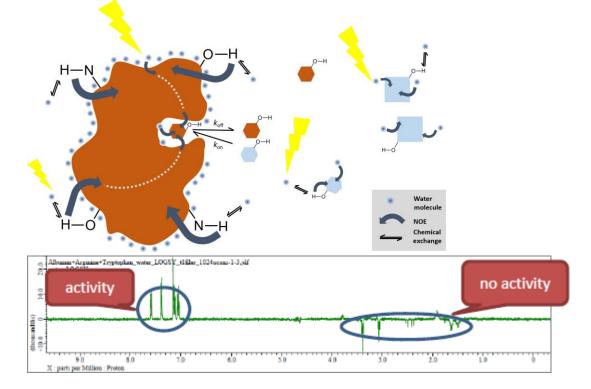

¹H-¹³C Gradient HMBC


In this experiment signals are produced by ¹³C atoms coupled to ¹H that are not directly attached. Typically, the experiment is set up to show couplings between next nearest neighbors (²J couplings). The spectrum is deciphered below with intersecting boxes, the black fields have no signal as they would are where a nearest neighbor (1J) coupling would exist. Notice that the quaternary carbons, which produced no signal in the HSQC above, do show up here and are highlighted in gray.


Stereo Chemistry

Because NOE can reveal 1H spins that are in proximity in 3D space, it is often used to assist research on the stereochemistry of organic compounds

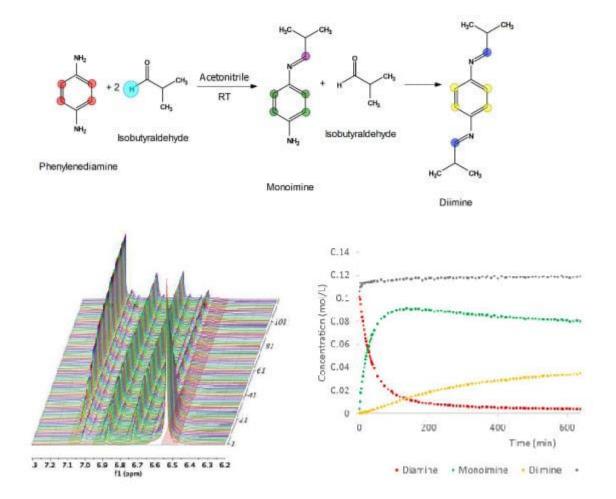
Quantitative Analyses - qNMR

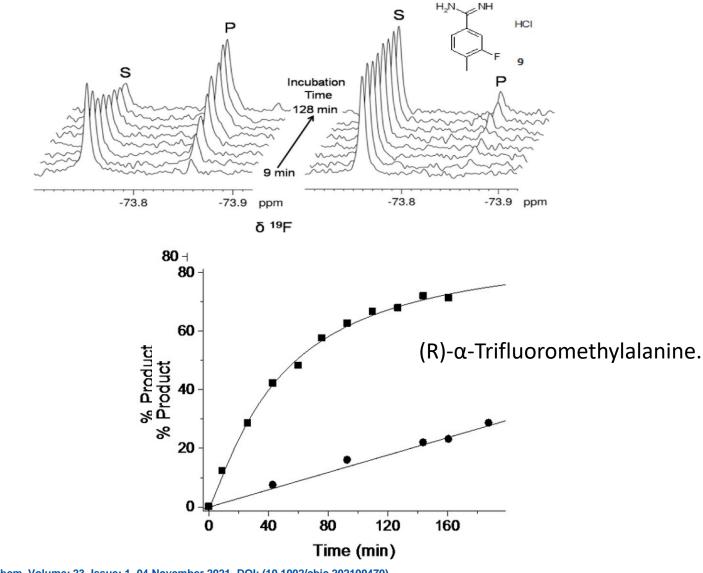

Molarity : C' = C * I'/I * H/H' * T'/T * d'/d Purity : P' = C' * M' / (100 * V')

No	. Po	sition	Group	Integral(I')	Protons(H')	Molarity(C')	Purity(P')	Avg. Calc.		
	1 1.93	2[ppm]		37.07[abn]	3	21.81[mmol/L]	98.39[%]			
	2 6.62	26[ppm]		24.98[abn]	2	22.05[mmol/L]	99.48[%]	V		
	3 7.28	87[ppm]		24.89[abn]	2	21.96[mmol/L]	99.10[%]	Ø		
	4 9.07	78[ppm]		8.33[abn]	1	14.70[mmol/L]	66.32[%]			
	5 9.58	33[ppm]		11.55[abn]	1	20.39[mmol/L]	91.99[%]			
	S	Supp	oort	s inter	nal an	d exteri	n <mark>al st</mark> a	ndar	d methods	
								9		
	Gain Scale 19.8 Avg. Molarity 21.94[mmol/L] Avg. Purity 98.99[%]									

4 <u>Quantitative Analyses – qNMR, Adolfo Botana, Jeol Inc.</u>

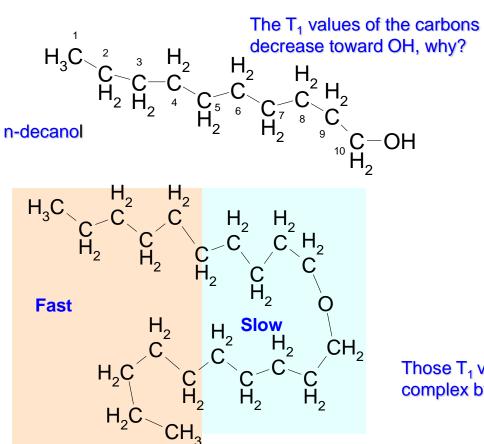
Saturation Transfer Differences


WaterLOGSY pulse sequence is a sensitive ligand-observed for detection of interaction between macromolecules, such as a ligand and a protein and DNA or RNA fragments.


<u>NMR waterLOGSY as An Assay in Drug Development Programmes for Detecting Protein-Ligand Interactions</u> <u>WaterLOGSY as a method for primary NMR screening: Practical aspects and range of applicability</u> The discovery of novel antitrypanosomal 4-phenyl-6-(pyridin-3-yl)pyrimidines

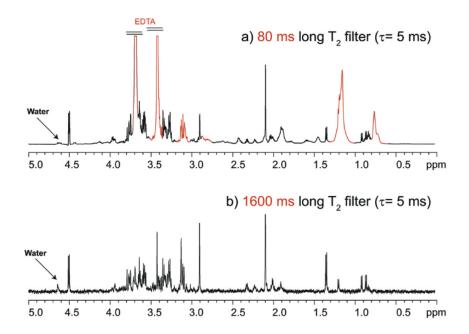
Solutions for Innovation JEOL

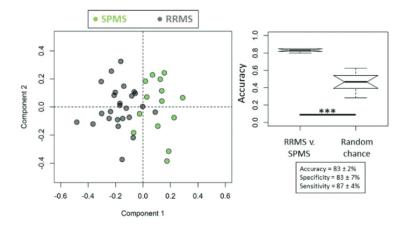
Reaction Monitoring and Kinetic analyses



19F NMR for the Monitoring of Protease Digestion of Peptides

ChemBioChem, Volume: 23, Issue: 1, 04 November 2021, DOI: (10.1002/cbic.202100470) https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cbic.202100470


Structural Information from T₁


Carbon	T ₁ /sec
1	3.1
2	2.2
3	1.6
4	1.1
5	0.84
6	0.84
7	0.84
8	0.77
9	0.77
10	0.65

Those T₁ values prove the two molecular complex by hydrogen bound

Biological samples analysis

Fig. 5 Wasted pulse sequences allow the use of T_2 filters of a length impossible to use achieve with presat-CPMG. This allows the introduction of T_2 encoding to distinguish between different metabolite populations. Compare (b), in which a 1600 ms long filter has been made possible by Wasted-II, with (a) in which an 80 ms filter has been used (also using Wasted-II). Note that the suppression of the water signal is excellent even when using these long filters. The sample is human blood with non-deuterated EDTA.

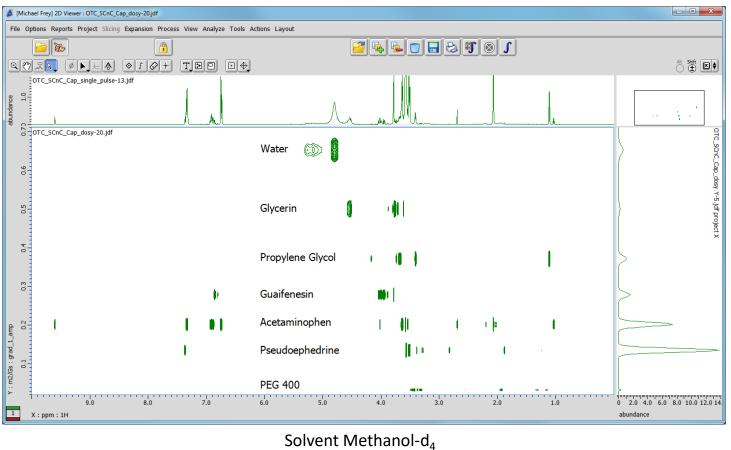
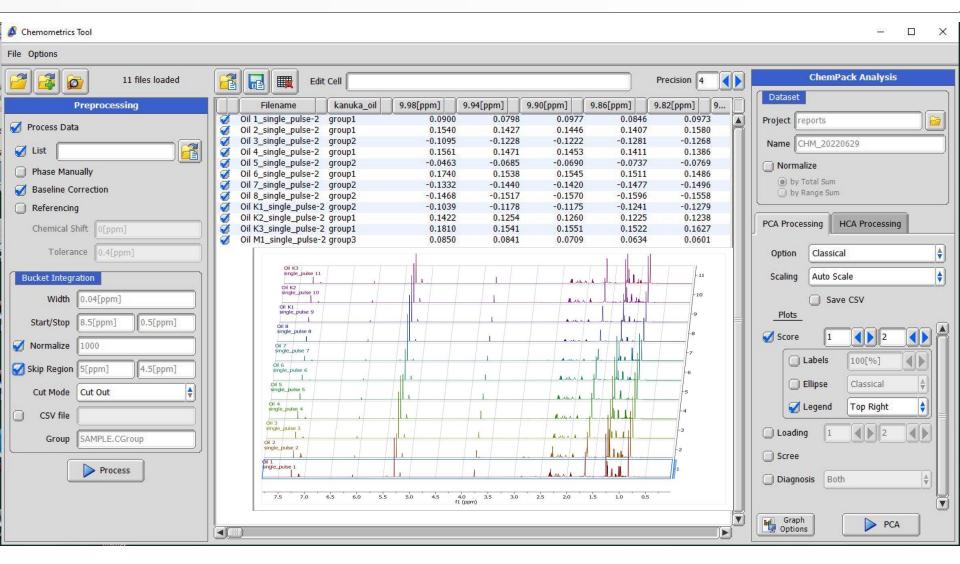


Fig. 6 OPLS-DA results from blood plasma Wasted-II ¹H NMR data discriminating SP from RR multiple sclerosis patients. Left, a representative scores plots illustrating separation between SPMS and RRMS plasma spectra in the multivariate models, and right, the accuracy of the cross-validated ensemble of OPLS-DA models is significantly better than random chance. Kolmogorov–Smirnov test *p*-values <0.001 are represented by ***.

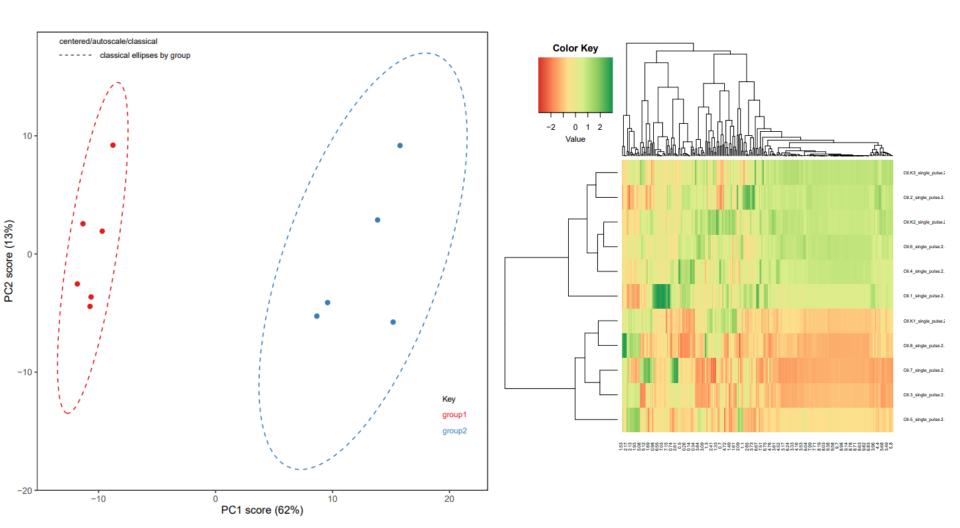
https://doi.org/10.1039/C9AN01005J

DOSY NMR of paracetamol tablet


Practical Introduction to DOSY

10

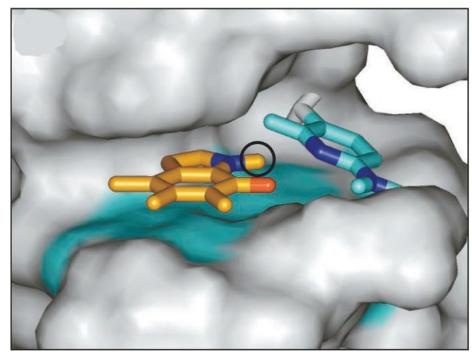
https://nmr.chemistry.manchester.ac.uk/?q=node/432


Metabolomics

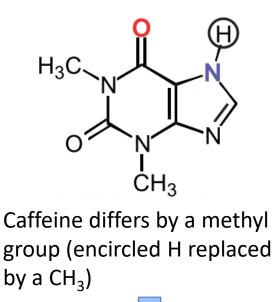
http://nmr.vuw.ac.nz/nmr/wp-content/uploads/presentations/Metabolomics.pdf

http://nmr.vuw.ac.nz/wunmr/wp-content/uploads/webinars/NMR_chemometrics_Jeol.pdf

Chemometrics Tool in Delta



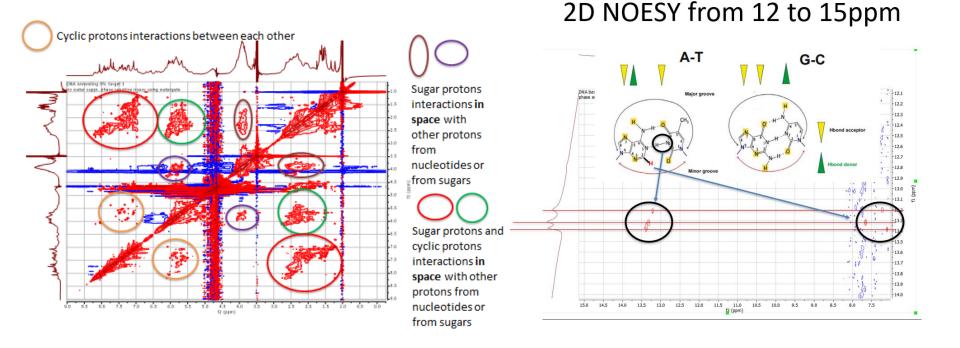
PCA- Principal Component Analyses


HCA- Hierarchical Cluster Analyses

http://nmr.vuw.ac.nz/nmr/wp-content/uploads/presentations/Metabolomics.pdf http://nmr.vuw.ac.nz/wunmr/wp-content/uploads/webinars/NMR chemometrics Jeol.pdf

Molecular investigation of the interaction targetaptamer: where does the binding event takes place ?

Stacking and hydrogen bond interaction ! RNA structural interactions in a ligand binding site proved by NMR spectroscopy



Displays affinity for theophylline 10,000 times that of caffeine

Hermann, T. and D. J. Patel (2000). "Adaptive Recognition by Nucleic Acid Aptamers." <u>Science **287**(5454): 820-825.</u> Zimmermann, G. R., et al. (1997). "Interlocking structural motifs mediate molecular discrimination by a theophylline-binding RNA." <u>Nature Structural Biology **4**(8): 644-649.</u>

Noesy-Nuclear Overhauser Effect

http://nmr.vuw.ac.nz/wunmr/wp-content/uploads/applications/Aptemer_NMR.pdf

Unraveling the binding mode of a methamphetamine aptamer: a spec-troscopic and calorimetric investigation Clement Sester,†,‡ Jordan AJ McCone, II Ian Vorster,‡ Joanne E Harvey, II and Justin M Hodgkiss*,†,‡

http://nmr.vuw.ac.nz/wunmr/wp-content/uploads/applications/Encapsulating%20an%20amino%20acid%20in%20a%20DNA%20fold.pdf http://nmr.vuw.ac.nz/wunmr/wp-content/uploads/applications/Aptemer_NMR.pdf http://nmr.vuw.ac.nz/wunmr/wp-content/uploads/webinars/NMR_chemometrics_Jeol.pdf

NMR Applications Biological Sciences

http://www.eurobionmr.eu/open-access-to-biological-nmr-in-europe/

http://nmr.vuw.ac.nz/wunmr/index.php/applications/

http://nmr.vuw.ac.nz/nmr/index.php/presentations/

http://nmr.vuw.ac.nz/wunmr/wp-content/uploads/webinars/NMR_chemometrics_Jeol.pdf http://nmr.vuw.ac.nz/nmr/wp-content/uploads/presentations/Metabolomics.pdf http://nmr.vuw.ac.nz/nmr/wp-content/uploads/2021/11/Applications.pdf http://nmr.vuw.ac.nz/wunmr/wp-content/uploads/Training/1D_2D_Training.pdf