

NMR Training Course

9th September 2021 Adolfo Botana, PhD JEOL UK Demo Lab

quantitative NMR

Quantitative analysis by chromatography and NMR

Case study

Figure 1 Comparison of Commercial Carminic Acid Reagents (results)

Cochineal extract:

A red pigment obtained by drying scale insects (superfamily Coccoidea) and extracting with water or ethanol. The main component is carminic acid.

No SI- traceable reference material for quantitative analysis exists

Grade	Maker	Catalog purity	qNMR purity(%) : as potassium salt trihydrate	
(Reagent)	А	>70%(HPLC)	25.3%	
(Reagent)	В	>95% (Spectrophotometric)	92.9%	
(Reagent)	С	Not listed	81.1%	
(Reagent)	D	Not listed	80.8%	
(Reagent)	E	95%	91.6%	
(Reagent)	F	70~90%	86.5%	
l'II use A	Mr.	A Analyte	Ms. B Correction can be applied	

https://www.jeol.co.jp/en/products/nmr/qnmr_nl/qnmr_issue007.html

Traceability

Figure 2 Future Image of Quantitative Analysis of Organic Compounds

Measurement results can be traced back to a reference standard (usually, a national standard material) through an unbroken chain of calibrations.

https://www.jeol.co.jp/en/products/nmr/qnmr_nl/qnmr_issue007.html https://www.jeol.co.jp/en/products/nmr/qnmr_nl/qnmr_issue005.html https://www.sigmaaldrich.com/MA/fr/applications/analyticalchemistry/calibration-qualification-and-validation

What is involved in qNMR?

https://www.youtube.com/watch?v=7VYE-W28VYg

Solutions for Innovation JEOL

Quantitative analysis by NMR spectroscopy

Relative quantification

Absolute quantification

Q: What is the **ratio** between signal A and signal B in my sample?

Signals A and B may represent two signals in one compound or two signals in two compounds Q: What is the **concentration/amount** of analyte?

Standard compound of known concentration/amount is added

Relative quantification in NMR spectroscopy

The proportionality between the integral intensity *I* and the number of protons *N* under quantitative conditions:

$$\frac{I_{\rm i}}{I_{\rm j}} = \frac{N_{\rm i}}{N_{\rm j}}$$

I: Integral intensity

N: Number of protons

¹H spectrum of ethanol

Absolute quantification in NMR spectroscopy

• qNMR does not use reference substance identical with analyte

qNMR can measure concentration in mole and determine purity as mass fraction

- proper operation
- SI-traceable reference substance (CRM)

qNMR methods using internal and external standard

Internal vs external quantification

Accurate and precise weighing

To ensure high accuracy and precision, the analyte and standard are weighed on an ultra–microbalance. The definition of minimum sample weight (W_{min}) has been adopted from the United States Pharmacopeia (USP). Three samples are prepared for qNMR measurement and measured in triplicates.

> 1 mg

1 mL

Ultra-microbalance Mettler Toledo XP2U

Analyte:	
Standard:	
Solvent:	

A substance in an aluminum weighing boat in a vial > 1 mg

Choice of internal standard

Stable and soluble in the solvent
 No signal overlaps with signals of the analyte and solvent
 No interactions with the analyte and solvent
 High and assured purity (CRM)

Information and CRMs:

https://labchem-wako.fujifilm.com/europe/category/00622.html https://www.sigmaaldrich.com/MA/fr/applications/analyticalchemistry/calibration-qualification-and-validation

Weighing internal standard

$W_{\rm min} = \sigma \times 2000$

- W_{min}: Minimum Weight
 - σ: Standard deviation calculated with ten repeated measurements

Measurement example of Minimum Weight

Type of balance	Minimum Weight (W _{min})
Semi-micro balance (readability: 0.01 mg)	13.9 mg
Micro balance (readability: 0.001 mg)	2.8 mg
Ultra-micro balance (readability: 0.0001 mg)	0.2 mg

https://labchem-wako.fujifilm.com/europe/category/00622.html

Volume measurements

Generally pipettes are less precise than analytical balances Consider liquids viscosity, temperature, interactions with pipette Manual vs electronic, air displacement vs positive displacement, etc.

160

Cat. No.	Volume Range (calibration)	Volume Range (functional‡)	Increments	Accuracy (%)†	Precision (%)†	Color Code
46200000	1–10µL, micro	0.5–10µL	0.01µL	3.5 to 1.0±	3.0 to 0.5	Pink
46200100	1–10µL	0.510µL	0.01µL	7.0 to 1.0±	6.0 to 0.5	Yellow
46200200	5-50µL, micro	2.5-50µL	0.1µL	3.0 to 0.8±	2.5 to 0.3	Turquoise
46200300	550µL	2.550µL	0.1µL	3.0 to 0.8±	2.5 to 0.3	Yellow
46200400	10–100µL	5-100µL	0.1µL	3.0 to 0.8±	1.0 to 0.2	Yellow
46200500	30300µL	15300µL	1µL	3.0 to 0.6±	0.7 to 0.2	Orange
46200600	1001000µL	501000µL	1µL	3.0 to 0.6±	0.6 to 0.2	Blue
46200700	0.55mL	0.255mL	0.01mL	3.0 to 0.6±	0.8 to 0.2	Green
46200800	1-10mL	0.5-10mL	0.01mL	3.0 to 0.6±	0.8 to 0.2	Red

†Factory calibration limits achieved under strictly controlled conditions (ISO 8655)

The Functional volume range indicates the volume range that the pipette can cover in the Stepper, Sequential Stepper and Sequential Aspirate functions.

https://gb.gilson.com/pub/media/docs/GuideToPipettingE.pdf

https://handling-solutions.eppendorf.com/liquid-handling/faqs/

https://www.eppendorf.com/MY-en/liquid-guide/

https://www.artel.co/learning_center/in-the-lab-pipettes/

https://doi.org/10.3390/en11102567

https://www.pipettipfinder.com/Topics/Why-We-Dont-List-Pipettor-Accuracy.aspx

https://www.integra-biosciences.com/china/en/blog/article/everything-you-need-know-about-pipettes

qNMR measurement

Conditions used in qNMR measurement

The acquisition parameters have been optimized to obtain accurate quantitative information from ¹H spectrum

Parameter	Value	
Pulse flip angle	90°	
Digital resolution	< 0.25 Hz	
Repetition time	> 60 sec (7* <i>T</i> ₁)	
Acquisition time	> 3 sec (>5* <i>T</i> ₂)	
Number of scans	SNR>150 (<1%error)	
Dummy scans	2	
Spinning	OFF	
¹³ C decoupling	(ON)	

SNR

Fig. 4. S/N and its influence to the uncertainty of qNMR. Dotted line represents an uncertainty level of 1% relative.

https://doi.org/10.1016/j.jpba.2005.01.043

SNR

- LOD: Limit of Detection is 3:1 for every signal from the molecule!
- LOQ: Limit of Quantification depends on confidence level of results

S/N	Relative Measurement Uncertainty in %*
30	10
60	3
150	1
400	0.5
1200	0.1
10000	0.07
20000	0.05

http://dx.doi.org/10.13140/RG.2.1.1244.3689

Pulse flip angle and relaxation time

20

Integration under semi-quantitative and quantitative conditions

Spinning side bands

¹H-NMR spectrum of chloroform spinning at 5 Hz

13C broadband decoupling

Solutions for Innovation JEOL

Resolution

- 1s acquisition time does not provide enough resolution to resolve multiplets
- Integrals are less accurate due to this loss of information
- It can be compensated with additional zero-filling, but this may not resolve additional signals beyond 2x zero-filling
- At least 4[s] acquisition time is needed

Data processing and analysis

Accurate and precise qNMR analysis requires:

- 3 repetitions per each sample
- Each peak defined by several points (zero filling)
- Adequate phase and baseline correction
- Accurate integration with sufficient width and with the same margins for each region (e.g.50Hz), peak deconvolution will be necessary for overlapped peaks
- Appropriate calculation of concentration/purity of analyte

Other nuclei

Spectral windows can be very broad for nuclei other than ¹H, consider the effects of:

- Receiver (ECZ is linear, older consoles not so much)
- Tuning (physical limitation, qNMR may require retuning at different offsets)
- Excitation profile (1[us], <2% error across 160kHz)
- Background signal (Deconvolution, LP, tube material, Depth pulse sequence,...)
- T₁(¹⁰⁹Ag in AgNO₃ is ~10min), relaxation agents reduce it
- 19F: <u>https://doi.org/10.1002/cmr.a.21422</u>

Fluorine excitation (hard pulse in a ECZ-S 400)

13C qNMR setup

- Quantitative 13C measurements are time-consuming
- It is thus important to optimize the total measurement time. Measure the T1s of your signals, at least once for the type of compounds studied.
- Use saturation recovery sat_recovery_dec.jxp, this experiment, unlike inversion recovery, does not need a very long relaxation delay (which cannot be set correctly unless you already know an estimate of the T1s)
 - Use as many scans to get an SNR of 50 in 13C
 - Set relaxation_delay to 1[s]
 - Set x_sat_time to 0.04[s] and x_sat_atn to xatn + 10[dB]
 - Ensure this is typed correctly, otherwise probe may be destroyed
 - Array tau_interval, e.g. y_acq {10[s], 0.2[s], 0.5[s], 1[s], 2[s], 5[s], 10[s], 40[s]}
 - Use curve analysis Sat. Recovery fitting (or decay analysis processing) to evaluate T1s
- Use 5 times the longest T1 as the repetition time (relaxation_delay+x_acq_time) of the 13C qNMR experiment
 - Or focus only on a signal of the compound of interest, one with the shortest t1 and strong intensity (more carbons)

xatn

xatn + 10[dB

79[dB]

40.0[ms]

89[dB]

x_atn

x_sat_time

x_sat_atn

13C qNMR setup, scans

- Achieving enough SNR to achieve uncertainty criteria can be the most challenging aspect of 13C qNMR
- Depending on the application we can settle with an SNR around 50, but ideally SNR should reach 150. There is no major gain by increasing the SNR beyond this, without taking great care of other parameters
- As a rule of thumb, if no signals are discernible after 4 scans, acquiring a quantitative spectrum is not feasible with that sample concentration/probe
- SNR scaling up with the number of scans:

SNR	Scans
10	4
40	64
160	1024
640	16384

SNR	Scans
5	4
20	64
80	1024
320	16384

SNR	Scans
2	4
8	64
32	1024
128	16384

SNR	Uncertainty in %
30	10
60	3
150	1
400	0.5
1200	0.1

http://dx.doi.org/10.13140/RG.2.1.1244.3689

13C qNMR (menthol 30%) scans

13C qNMR setup, relaxation delay

Magnetization recovers as per the following equation

$$M_z = M_0 [1-(1-\cosartheta)e^{\,\overline{T_1}}\,]$$

- There is no major gain by increasing the repetition time beyond 5 T1, without taking great care of other parameters
- Uncertainty as per pulse width and repetition time:

Uncertainty in %	Repetition time for 90 deg (T1 times)	Repetition time for 60 deg (T1 times)	Repetition time for 30 deg (T1 times)
10	2.3	1.6	0.3
5	3.0	2.3	1.0
1	4.6	3.9	2.6
0.5	5.3	4.6	3.3
0.1	6.9	6.2	4.9

13C qNMR (menthol 30%) relaxation delay

hs for Innovation JEO

13C qNMR setup, pulse width

There are different considerations when choosing the pulse flip angle / pulse width:

- Excitation profile for <1% error
 - <5.5us @ 400MHz
 - <4.3us @ 500MHz
 - <3.6us @ 600MHz
- SNR per unit time when using the optimum repetition time for target uncertainty level (sine flip angle/ rep. time)

Uncertainty in %	SNR/time for 90 deg	SNR/time for 60 deg	SNR/time for 30 deg
10	1.00	1.24	3.94
5	0.77	0.87	1.17
1	0.50	0.51	0.44
0.5	0.43	0.43	0.35
0.1	0.33	0.32	0.24

• Reproducibility for external quantitation

13C qNMR setup, excitation profile

13C qNMR (menthol 30%) pulse width

Solutions for Innovation JEOL

13C qNMR setup, decoupling

- The 1H decoupling is an important source of error
 - NOE effects are negligible with no decoupling during the long relaxation delay
- The decoupling modulation used affects both the effective bandwidth and artifacts. WALTZ generally provides spectra with low level of artifacts
- WALTZ64 is the default decoupling in Delta, no significant differences observed with WALTZ65 (available with Delta 6.0)
- Default decoupling pulse width insufficient to achieve 1% uncertainty. Set irr_pwidth to irr_pwidth_default/1.5 to improve the effective bandwidth
 - Ensure that irr_atn_dec is at least 18[dB] higher that the power level for the square pulse for Proton in the probe tool. Otherwise probe may be damaged
 - Approximately equivalent to 85us @ 400MHz, 67us @ 500MHz, 55us @ 600MHz
- Adiabatic decoupling could potentially provide better results (<u>https://doi.org/10.1016/j.jmr.2006.11.007</u>), but this has not been observed in our measurements and no other publication has been found using it
- Bilevel decoupling could help reduce the decoupling power requirements for higher field systems (<u>https://doi.org/10.1021/acs.analchem.0c03753</u>), this has not been tested yet in our measurements

13C qNMR (menthol 30%) decoupling bandwidth

WALTZ bandwidth ~ 2* 90 pulse power

(85us@400, 67us@500, 55us@600 to get pulse power covering 150% of bandwidth)

Solutions for Innovation JEOL

13C qNMR (menthol 30%) decoupling offset

13C qNMR (menthol 30%) adiabatic decoupling

The homonuclear couplings are known to interfere with the decoupling process and can seriously compromise the quality of the spectra Complete homonuclear decoupling is achieved only if the sweep bandwidth is twice the chemical shift difference between spins A and X https://doi.org/10.1016/S0076-6879(02)38216-8

Decoupling sidebands

The sidebands in all cases apart from the spectrum acquired under WALTZ decoupling conditions completely override the signal of a minor impurity (~3%) at 2.24 ppm

The ³¹P NMR spectrum of HP(=O)(OCH₂CH₃)₂ indicates the resultant sidebands with decoupling of ¹H by (a) CPD decoupling using WALTZ (PW, 60 μ s; PL, 10 dB; , 1.33 Hz; DB, 10 kHz; SDB, 5 kHz); (b) CPD decoupling using GARP (PW, 60 μ s; PL, 9.4 dB; , 1.35 Hz; DB, 19 kHz; SDB, 7 kHz); (c) MPF decoupling (PW, 1 ms; PL, 11.3 dB; , 1.32 Hz; DB, 28 kHz; SDB, 7 kHz); (d) APD using CHIRP (PW, 1 ms; PL, 5.8 dB; , 1.47 Hz; DB, 44 kHz; SDB, 15 kHz); and (e) the same as (a) but with higher amplification to highlight the sidebands. The signal of a minor impurity (~3%) at 2.24 ppm is indicated with an asterisk. Note: all spectra within this figure, and similarly for spectra within the following figures, have been acquired with the same number of scans and receiver gain and processed in exactly the same way with identical line broadening and amplification unless explicitly stated otherwise. Legend: PW, pulse width (length); PL, power level; , linewidth (width at half-height); DB, decoupling bandwidth; and SDB, sideband decoupling bandwidth. https://doi.org/10.1155/2014/289638

13C qNMR setup, alternatives

- There are a number of experiments claiming to be better alternatives for 13C NMR quantitation
- These can be useful to compare samples of the same type, but due to the relaxation delays during the pulse sequences and the signal dependency on 1H coupling these are not inherently quantitative experiments
- QPOMMIE has been tried to evaluate whether quantification is possible

Q-POMMIE

13C qNMR setup, processing

- Use a matched filter to maximize SNR (exponential line broadening equal to peak linewidth
- For cold probes, FID prediction (blip_cld) may be needed, typically two predicted points are sufficient to obtain flat baselines
- Set at least 2 times zero filling
- Baseline noise is typically considerable
 - The default Delta integration does a local baseline correction, where the baseline is considered to be at the edges of the integral. This leads to substantial error when integrating spectra with low SNR
 - Reset the slope and offset when integrating spectra with low SNR, like 13C spectra.
 - The default behavior can be changed in menu Options>Preferences, Geometry tab: Adjust Integral Slope/Offset
 - Use the simplest possible baseline correction (such as polynomial order 3)
 - Alternatively increase the number of points averaged to more than 11. The default behavior can be changed in menu Options>Preferences, Geometry tab: Integral Averaging Points. This is less accurate than zero slope and offset

Zero-filling and line-broadening

- 1-time zero filling is needed (2 times zerofill in Delta definition)
- Zero-filling further will improve results when integrating peaks with different linewidths*

 Further zero-filling also increases the importance of noise integral affecting quantification precision

* Different papers reach different conclusions (inconclusive results from this dataset) <u>https://doi.org/10.1016/j.jmr.2006.06.026</u> <u>https://doi.org/10.1016/0022-2364(89)90115-7</u> <u>https://doi.org/10.1021/acs.analchem.1c00407</u> <u>https://doi.org/10.1039/C3AY26106A parameters choice may lead to better results with no zero-fillingtions for Innovation JECL</u>

Line-broadening

Integral regions

- Increasing integral regions improves accuracy, as we integrate a wider region of the peak, but it decreases precision due to the integrating more noise region.
- For lower SNR data integral regions should be smaller

"While an increase in the integration range results in improved accuracy, the precision decreases because the variance of the integral of white Gaussian noise is a Wiener process and thus increases linearly with range."

https://doi.org/10.1021/acs.analchem.1c00407 https://www.youtube.com/watch?v=7VYE-W28VYg

So the smaller the integral region the better?

- Smaller integral region : higher precision, lower accuracy
- Note that the absolute value of an integral is not important, we compare the integral of the analyte of interest with the reference integral
- Both analyte peak and reference peak must therefore have similar linewidths to improve accuracy (consider different integral width if different linewidths)

Solutions for Innovation JEOL

• Line broadening attenuates linewidth differences

Integral regions width

Solutions for Innovation JEOL

qNMR in Delta

Molarity : C' = C * I'/I * H/H' * T'/T * d'/d Purity : P' = C' * M' / (100 * V')

No.	Position	Group	Integral(I')	Protons(H')	Molarity(C')	Purity(P')	Avg. Calc.		JD
1	1.932[ppm]		37.07[abn]	3	21.81[mmol/L]	98.39[%]			
2	6.626[ppm]		24.98[abn]	2	22.05[mmol/L]	99.48[%]			
3	7.287[ppm]		24.89[abn]	2	21.96[mmol/L]	99.10[%]			
4	9.078[ppm]		8.33[abn]	1	14.70[mmol/L]	66.32[%]			
5	9.583[ppm]		11.55[abn]	1	20.39[mmol/L]	91.99[%]			
Supports internal and external standard methods									
	Gain Scale 19.8 Avg. Molarity 21.94[mmol/L] Avg. Purity 98.99[%]								

🖉 Quantitative Analysis				
File Options				
🔁 🐌 🕽 👪 🎭 😂				
Triphenylphosphine_Proton-90_qnmr-2.jdf		Click left side i	con to open sample data file.	
everypunge 12.0 10.0 8.0 6.0 4.0 2.0 0 X : parts per Million : Proton	-2.0			
Standard Data Sample Data Calculations				
Compound Triphenylphosphate		recvr_gain(G)	50	
Integral Position 7.245[ppm]		temp_get(T)	298.16[K]	
Integral Value(I) 91.07[abn]		x_pulse(d)	5.9[us]	
Molecular Weight(M)		scale factor(S)	1	
Protons(H) 15		average factor(A)	1	
Weight(m)	[mg]	normalize factor(N)	1	
Volume(L)	[mL]			
Volume Conc.(V) m/(10*L)	[%(w/v)]			
Purity(P)	[%]			
Molarity(C) 48.5	[mmol/L]			
				V

Input for standard

Solutions for Innovation JEOL

Alternative Input for standard for purity calculation

Automated Calculation for Sample data

🖉 Quantitative Analysis		ľ
File Options		
<mark>≥</mark> % ∫ % %		
Triphenylphosphine_Proton-90_qnmr-2.jdf	methanol_Proton-90-1.jdf	
0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sotting
Molarity: C' = C * I'/I * H/H' * T'/T * d'/d * (10 ** ((G - G') / 20)) Purity:	P' = C' * M' / (100 * V')	pro
No. Position Deconv. Group Integral(I') Protons(H	t') Molarity(C') Purity(P') Avg. Calc.	
1 4.102[ppm] 8.08[abn] 1	◆ 100.05[mmol/L]	
2 5.277[ppm] 16.17[abn] 2	◆ 100.18[mmol/L]	
3 5.493[ppm] 16.18[abn] 2	◆ 100.21[mmol/L]	
Gain Scale	e 20 Avg. Molarity Avg. Purity	

Setting number of protons

Resources

1) Our qNMR webpage has access to several resources: <u>https://www.jeol.co.jp/en/products/nmr/qnmr_index.html</u> including a note on traceability for qNMR: <u>https://www.jeol.co.jp/en/applications/detail/1171.html</u>

2) The Japanese legislation describing the methodology for this: <u>https://filex.jeol.com/filex/153668483730426/qNMR_Japanese_Pharmacopeia_english.pdf</u>

3) Chapter "Analytical Standards Purity Determination Using Quantitative Nuclear Magnetic Resonance", available from:

https://link.springer.com/chapter/10.1007/978-981-10-3421-3_20

which you can preview from:

https://books.google.ie/books?id=VIxkDgAAQBAJ&pg=PA275&lpg=PA275&dq=doi:10.1007/978-981-10-3421-

<u>3</u>20&source=bl&ots=74FGNFTX_G&sig=pHZ8zc7eSF02FGwXeFgsbZNuD9Y&hl=en&sa=X&ved=2 ahUKEwjjlZ_LsrPdAhVNdcAKHeiMDfQQ6AEwAHoECAIQAQ#v=onepage&q=doi%3A10.1007%2F9 78-981-10-3421-3_20&f=false

4) Chapter "Applications of Quantitative 1H NMR in Food- Related Analysis" <u>http://www.eurekaselect.com/141180/chapter/applications-of-quantitative-1h-nmr-in-food--</u> <u>related-analysi</u> Solutions for Innovation JEOL

Thank you

You can discover more at

- http://www.jeol.co.jp/en/ (Products -> NMR)
 - Description of our products
 - Free processing software
 - Free natural products database
 - Application notes
 - Events
 - And more

You can discover more at	JEOL O PRODUCTS APPLICATIONS NOTES SUPPORT AS	JUT US	
 <u>http://www.jeol.co.jp/en/</u> (Products -> NMR) – Description of our products 	2018/08/24 Update: NHR Challenge - Moving into the future with an evolution of reliability 2018/08/24 Deta NMR Software "Deta Titat" (NMOT_0037 to NMOT_0038) 2018/08/14 ROYALPROBE HRX Application Example (2) 2018/08/14 ROYALPROBE HRX Application Example (1) 2018/08/14 ROYALPROBE HRX		
 Free processing software Free natural products database Application notes Events 	CASE STUDY Synthetic Organic Chemistry Laboratory (Kobayashi Lab), Department of Chemistry, School of Science, University of Tokyo		
 – And more • <u>http://nmrsupport.jeol.com/</u> (license) 	PRODUCT LINEUP Image: Construction of the processing software MRR data processing software NMR data processing software MRR software MR	>	